

October 19, 2009

Mr. Mohammad Zaidi RWQCB, Los Angeles Region 320 West Fourth Street, Suite 200 Los Angeles, CA 90013

RE: Third Quarter 2009 Groundwater Monitoring Report

Former Mission Linen Supply Facility 11904-11920 East Washington Boulevard, Santa Fe Springs, California SLIC Case No. 713

Dear Mr. Zaidi:

On behalf of Mission Linen Supply, CGC Environmental, Inc. is submitting this third quarter 2009 Groundwater Monitoring Report for the above-referenced facility.

If you have any questions or need additional information, please contact me at (562) 592-0134 or Donald Moore at (415) 566-0300.

Sincerely,

CGC Environmental, Inc.

Norman D. Colby, PG, CHg Principal Hydrogeologist

Enclosure/hard copy with CD

cc: Mr. Don Bock, Mission Linen Supply (with enclosure/CD & electronic transmittal)

Mr. Donald Moore, Environmental Risk Solutions, Inc. (with enclosure/electronic

transmittal)

Mr. Matt Sutton, The Source Group, Inc. (with enclosure/electronic transmittal)

Groundwater Monitoring Report Third Quarter 2009

Former Mission Linen Supply Facility 11904-11920 East Washington Boulevard Santa Fe Springs, California 90606

Prepared For:

Mission Linen Supply 702 East Montecito Street Santa Barbara, California 93103

Prepared By:

CGC Environmental, Inc. 16596 Tiburon Place Huntington Beach, California 92649

Reviewed By:

Environmental Risk Solutions, Inc. 1279 18th Avenue, Suite 200 San Francisco, CA 94122

October 19, 2009

Table of Contents

1	Intro	oduction	1						
2	Back	kground	2						
3	Site a	Site and Regional Hydrogeology							
	3.1	Site Hydrogeology							
	3.2	Regional Hydrogeology	3						
4	Grou	undwater Monitoring and Sampling	5						
	4.1	.1 Depth to Water Measurements							
	4.2	Groundwater Sampling	5						
	4.3	Laboratory Analysis	6						
5	Resu	ults of Water-Level Measurements	7						
6	Resu	ults of Chemical Analyses	8						
	6.1	Chlorinated Volatile Organic Compounds	8						
		6.1.1 Tetrachloroethene	8						
		6.1.2 Trichloroethene	8						
		6.1.3 1,1- Dichloroethene	8						
	6.2	Data Quality Assessment	8						
	6.3	GeoTracker Database	9						
7	Disc	cussion of Quarterly Results	10						
	7.1	Groundwater Elevation and Flow Direction1							
	7.2								
8	Othe	er Activities Completed This Quarter	12						
9	Limit	tations and Professional Certification	13						

List of Figures

No. Title

- 1 Site Location Map
- 2 Site Plan
- 3 Groundwater Elevations
- 4 Groundwater Analytical Results

List of Tables

No. Title

- 1 Monitoring Well Construction Details
- 2 Groundwater Elevations
- 3 Groundwater Analytical Results
- 4 Summary of Duplicate Sample QA/QC Data

Appendices

No. Title

- A Groundwater Monitoring Field Sampling Forms
- B Laboratory Data and Chain of Custody Records
- C Historical Groundwater Elevations
- D Historical Groundwater Analytical Results
- E Time Series Chemical Data

1 Introduction

This report presents the results of quarterly groundwater monitoring activities for the third quarter 2009 conducted by CGC Environmental, Inc. (CGC) at the former Mission Linen Supply (Mission) facility located at 11904-11920 East Washington Street, Santa Fe Springs, California (the site; Figure 1). Quarterly monitoring is being performed pursuant to a Los Angeles Regional Water Quality Control Board (RWQCB) directive dated November 2, 2000 and is a component of ongoing assessment and restoration activities at the site designed to assess and remediate subsurface chlorinated volatile organic compound (VOC) contamination.

This quarterly groundwater monitoring report summarizes the third quarter groundwater gauging and sampling activities conducted on August 19, 2009.

2 Background

The site is located in an industrial/commercial area of Santa Fe Springs. In 1973, Mission purchased the site from the former owners who operated the Whittier Laundry Company. Mission conducted dry cleaning and industrial laundry operations there until 1982. In 1982 Mission acquired the adjacent property (11904-11906 East Washington Boulevard). All laundry and dry cleaning operations took place at the 11920 East Washington Boulevard address. In 1993, Mission had all buildings removed. The properties are currently vacant.

Mission removed five underground storage tanks (USTs) from the site in 1987. These tanks stored gasoline, diesel fuel and waste oil. Some hydrocarbon-impacted soil was identified during the tank removal project. Contaminated soil was excavated from the tank areas. In May 1994, the former UST locations were issued environmental closure by the County of Los Angeles Department of Public Works.

In 1996, Mission contracted National Environmental Consultants, Inc. (NEC) to complete an onsite soil gas survey. The soil gas assessment was performed to determine if VOCs were present in subsurface soils underlying the site. Tetrachloroethene (PCE) was detected by the soil gas survey. Follow-up soil and groundwater sampling by NEC and Dames and Moore identified PCE and other VOCs in soil and groundwater underlying the site. Rincon Consultants completed a soil gas survey at the site and adjacent properties to the south in December 2000. On July 26, 2001, a soil vapor extraction test was performed at the site. The findings of the assessment and pilot test were summarized in a report titled "Pilot Test Interpretation Report" prepared by Rincon Consultants and submitted to the RWQCB on September 7, 2001.

The Source Group, Inc. (SGI) installed six dual-nested vapor extraction (SVE) wells during the first quarter of 2005 for a soil vapor extraction and treatment system along with two groundwater monitoring wells for use in aquifer testing and enhanced in-situ bioremediation (EISB) pilot testing. SGI successfully completed aquifer testing in August 2005 and operated the SVE system from August 2005 to September 2007. SGI conducted an EISB injection event in the source area near wells MW-2 and MW-3 in December 2006. Results of these remediation activities are discussed in Section 7.2. A total of seven wells are currently monitored quarterly. Three piezometers previously installed at the site have been abandoned.

3 Site and Regional Hydrogeology

A brief summary of site hydrogeology and regional hydrogeology is presented below.

3.1 Site Hydrogeology

The site is located within the coastal plain of Los Angeles County. The site is located about 1.5 miles east of the San Gabriel River and about 2 miles southwest of the Puente Hills. Topography across the site is generally flat.

Sediments underlying the site are comprised of a series of non-marine and marine transported deposits of sand, silt and clay. The near-surface sedimentary materials are primarily deposits of the San Gabriel River and its tributaries and consist of silt, sand and some gravel. The river system originates in the San Gabriel Mountains, northeast of the site, and extends to the Pacific Ocean. The San Gabriel River flows through the Whittier Narrows, a geographic gap between the Puente Hills and the Montebello Hills.

Near-surface sediments have been drilled and sampled during the course of site activities completed at the site. The near-surface sediments consist of silt, sand and some gravel to a depth of about 50 feet below ground surface (bgs). Historically, groundwater has been measured in onsite groundwater monitoring wells at depths of approximately 23 to 39 feet bgs. The depth to groundwater has fluctuated over time. For example, the depth to groundwater in wells MW-1 through MW-3 increased from about 25 to 26 feet bgs in December 2000 to approximately 38 feet bgs in August 2004. However, depth to groundwater decreased significantly (approximately 8 to 10 feet) in most of the site monitoring wells since the second quarter of 2005, likely due to the heavy winter precipitation that the region experienced during that time. Water levels remained relatively stable between 2005 and late 2007, but depth to groundwater has increased markedly during 2008 and early 2009. The direction of groundwater flow is typically to the southwest.

3.2 Regional Hydrogeology

Information regarding the groundwater aquifers in the area of the site was obtained from Department of Water Resources Bulletin 104 (1988). The site is located at the eastern edge of the Montebello Forebay Area and the western edge of the Whittier Area in the coastal plain of Los Angeles County. The site is located within the La Habra Piedmont Slope located south of Puente Hills. Recent alluvium is present near the

ground surface and the Gaspur Aquifer is present within a depth of 50 feet bgs. The Gardena Aquifer is present within a depth of 150 feet bgs and the Lynwood Aquifer is present within depths of 200 to 300 feet bgs. The Silverado Aquifer is located approximately 350 to 500 feet bgs and the Sunnyside Aquifer is located greater than 500 feet bgs.

Although the Bellflower Aquiclude is not depicted in Cross Section N-N' of Bulletin 104, the presence of the aquiclude has been identified beneath the subject property on isopach maps of the different water-bearing units (Bulletin 104). The aquiclude consists of clays and silty clays. The depth to the base of the Bellflower Aquiclude in the vicinity of the subject property is approximately 120 feet above mean sea level (msl). The ground elevation of the subject property is about 155 feet above msl, thus, pursuant to Bulletin 104, the depth to the base of the Bellflower Aquiclude at the subject property is about 35 feet bgs. This depth of the base of the Bellflower coincides with the base of a silty zone that was encountered onsite, which extends from about 15 to 30 feet bgs.

The nearest surface water bodies to the site are the Sorensen Drain and the San Gabriel River. The Sorensen Drain is located approximately 2,400 feet to the southwest of the site and flows southeast to La Cañada Verde Creek. The San Gabriel River is located approximately 7,200 feet (1.4 miles) to the northwest of the site and flows to the southwest.

4 Groundwater Monitoring and Sampling

Methods for measuring depth to water, collecting groundwater samples, and performing laboratory analysis are presented below.

4.1 Depth to Water Measurements

The depth to static groundwater was measured prior to sampling in monitoring wells MW-1 through MW-5, MW-7 and MW-8 on August 19, 2009. Water-level data was recorded on the well gauging data forms and well monitoring data sheets (Appendix A). The location of each groundwater monitoring well is shown on Figure 2. Construction details for the groundwater monitoring wells are presented in Table 1.

4.2 Groundwater Sampling

During this quarterly monitoring period, a groundwater sample was collected from one monitoring well. A groundwater sample was collected on August 19, 2009 from monitoring well MW-8. Insufficient groundwater was present in wells MW-1 through MW-5 and MW-7 to collect samples this quarter. The groundwater sample and water level data were collected in general accordance with United States Environmental Protection Agency (EPA) sampling guidance.

Due to the minimal amount of water available in well MW-8, a disposable bailer was used to purge and sample the well. Three casing volumes of water were removed during purging and prior to sample collection. During purging the pH, temperature, specific conductance, turbidity, oxidation-reduction potential (ORP) and dissolved oxygen of purge water were monitored and recorded on the sampling form.

Qualitative observations were also recorded. Purging continued until stabilization of water quality parameters (± 0.1 units for pH and ± 3% for specific conductance) was achieved. These parameters were measured to assess the stability of extracted groundwater. Stable field parameter measurements tend to indicate that the groundwater samples collected will be representative of in-situ groundwater conditions. Field measurement instruments were calibrated daily prior to their use. The recorded field measurements are included on the well monitoring data sheets presented in Appendix A. The instrument calibration data is presented on the Test Equipment Calibration Log (Appendix A). Monitoring well purge water is being stored onsite in labeled 55-gallon drums until proper disposal is arranged.

A duplicate sample (MW-DUP) was collected from monitoring well MW-8 for quality control (QC) purposes to assess the reproducibility of laboratory results. Included in the laboratory report (Appendix B) is a sample receipt checklist indicating the condition of the sample containers and cooler upon arrival at the laboratory. This form indicates that the samples arrived intact and within the prescribed EPA temperature range of 4 degrees Celsius ($^{\circ}$ C) $\pm 2^{\circ}$ C during storage and transport.

4.3 Laboratory Analysis

Samples collected during this quarterly monitoring event were submitted to TestAmerica Laboratories, Inc. (STL) of Pleasanton, California, a State-of-California certified analytical laboratory following chain of custody protocols. All groundwater samples collected this quarter were analyzed for VOCs using EPA Method 8260B. Copies of laboratory reports and chain of custody records are included in Appendix B.

5 Results of Water-Level Measurements

Three of the seven site monitoring wells were dry this quarter. Only wells MW-1, MW-2, MW-3 and MW-8 contained measurable water and wells MW-1 through MW-3 contained less than 0.1 feet of water. Therefore an accurate groundwater elevation could only be calculated for well MW-8 this quarter. The calculated groundwater elevation in MW-8 was 109.09 feet msl, a decrease of 0.99 feet compared to the previous quarter (May 2009).

The depth to water measurements and calculated groundwater elevations (if applicable) in each monitoring well this quarter are presented in Table 2. Historical groundwater elevations are listed in Appendix C. A groundwater contour map and associated hydraulic gradient and flow direction could not be developed for the site this quarter since only one well contained sufficient water from which to calculate an accurate groundwater elevation. A figure showing the groundwater elevations for this period is presented on Figure 3.

6 Results of Chemical Analyses

The following sections summarize the analytical results of the groundwater samples obtained as part of this quarterly monitoring event. As noted previously, only well MW-8 contained sufficient groundwater to collect a sample this quarter. The analytical results for this well for the third quarter 2009 are listed in Table 3. The distribution of analytes detected is shown on Figure 4. Historical analytical results are presented in Appendix D. Laboratory reports are included in Appendix B. Time-series plots of VOCs in site monitoring wells are included in Appendix E.

6.1 Chlorinated Volatile Organic Compounds

Three chlorinated VOCs were detected in the groundwater sample obtained from monitoring well MW-8 during this monitoring period. These VOCs are tetrachloroethene (PCE), trichloroethene (TCE) and 1,1-dichloroethene (1,1-DCE). No other VOCs were detected in groundwater samples collected this quarter.

6.1.1 Tetrachloroethene

PCE was detected this quarter at concentrations of 270/270 μ g/L (primary/duplicate samples) in well MW-8. The PCE detections are above the EPA Region 9 maximum contaminant level (MCL) for PCE of 5 μ g/L.

6.1.2 Trichloroethene

TCE was detected at concentrations of 15/14 μ g/L (primary/duplicate samples) in well MW-8. The detected concentrations of TCE exceed the EPA MCL of 5 μ g/L.

6.1.3 1,1- Dichloroethene

1,1-DCE was detected at concentrations of 5.7/5.5 μ g/L (primary/duplicate samples) in well MW-8. The detected concentrations of 1,1-DCE do not exceed the EPA MCL of 6 μ g/L

6.2 Data Quality Assessment

A review of the laboratory's internal QA/QC analysis of analytical method blanks, laboratory control standards (LCS) and matrix spike/matrix spike duplicate (MS/MSD) samples indicate no significant deviations from internal laboratory QC limits. Laboratory QA/QC data is included with the analytical data presented in Appendix B.

An evaluation of the precision of duplicate groundwater sample results through the evaluation of relative percent difference (RPD) between the sample (MW-8) and duplicate (MW-DUP) is presented in Table 4. As Table 4 indicates, the RPDs for the analytes detected in the groundwater samples are less than 7 percent.

6.3 GeoTracker Database

The third quarter 2009 groundwater monitoring report, analytical data, and depth to water data have been generated in electronic format for upload to the State Water Resources Control Board GeoTracker on-line database (http://www.geotracker.swrcb.ca.gov).

7 Discussion of Quarterly Results

A brief discussion of groundwater elevations and groundwater quality for this quarter is presented below.

7.1 Groundwater Elevation and Flow Direction

Groundwater elevations have decreased substantially during recent quarters. Three of the seven site monitoring wells were completely dry and three others contained only minimal water (less than 0.1 foot) this quarter. Groundwater elevations are currently at their lowest point since monitoring began in late 2000. The groundwater elevation in well MW-8 decreased 0.99 feet this quarter compared to the previous sampling event in May 2009. The direction of groundwater flow and hydraulic gradient could not be established this quarter due to the absence of groundwater in most wells. The groundwater flow direction has historically been interpreted to be to the southwest at a gradient of approximately 0.001.

7.2 Groundwater Quality and Remedial Analysis

As noted previously, only well MW-8 contained sufficient water to collect a sample this quarter. The detections of chlorinated VOCs in the groundwater sample obtained from well MW-8 are similar to recent quarters. Although most wells could not be sampled this quarter or the previous quarter due to low water levels, prior quarterly data have shown a decreasing trend in VOCs that is attributed to active source area remedial activities implemented since mid-2005 that have included soil vapor extraction (SVE) and enhanced in-situ bioremediation (EISB). The PCE concentration in well MW-3 was at a historic low during the third quarter 2008 and remained near historic lows during the fourth quarter 2008. The PCE concentration in MW-2 was also near historic lows during the third quarter 2008. TCE concentrations have also decreased to historic or near-historic lows in these wells. In addition, PCE concentrations in well MW-1 have decreased significantly since 2005 and were at a historic low in this well during the third quarter of 2008. The time-series plots of VOCs (Appendix E) illustrate the substantial decreases in PCE concentrations in the on-site wells since mid-2002 and generally stable concentrations in the off-site wells.

The significant decreases in chlorinated VOC concentrations in groundwater since 2004 can be attributed to a combination of factors including natural attenuation, successful implementation of SVE remediation, and EISB injection activities. The significant decrease in groundwater elevation in 2004 (~10 feet) appears to have exposed the upper portion of the Gaspur Aquifer allowing natural attenuation of this unit and the lower portion of the overlying fine-grained soils. Additionally, based on the high

hydraulic conductivity and transmissivity of the Gaspur Aquifer, natural attenuation by dispersion and dilution are also expected to be occurring. As displayed on the time series plots (Appendix E) for wells MW-1, MW-2, MW-3 and MW-5, implementation of SVE in 2005 and EISB remediation in 2006 has been very effective at reducing chlorinated VOC concentrations on-site to the current historic lows. Mission's consultants have also identified a number of off-site sources of VOC and metal contamination affecting regional groundwater quality in the vicinity of the site including the Omega Superfund site that were reviewed with the RWQCB in January 2008. These off-site sources complicate interpretation of the chlorinated VOCs found in off-site areas.

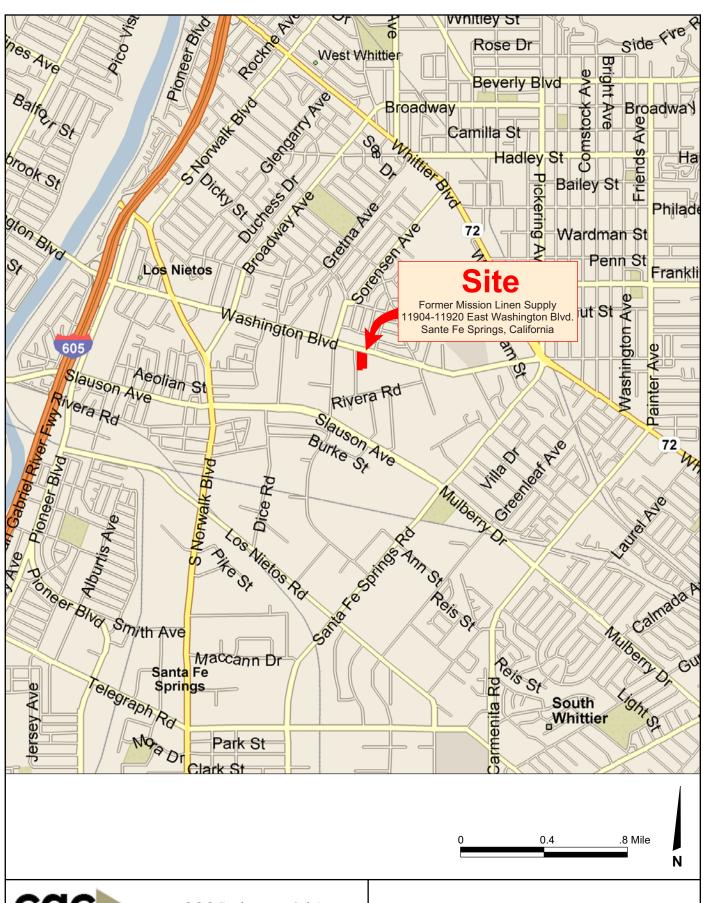
8 Other Activities Completed This Quarter

CGC submitted the Second Quarter 2009 Groundwater Monitoring Report for the site on behalf of Mission on July 24, 2009. SGI performed additional work at the site during the second quarter 2009. Additional activities conducted included continued operation of the vapor extraction system (VES) utilizing the wells with deeper screened intervals, and conducting a rebound assessment of vapor concentrations. Work completed included the following:

- Operation and maintenance of VES to meet permitting requirements, optimize VOC mass removal from deeper screened intervals, and minimize extraction of groundwater. Performed required monthly system sampling and analyses, and optimized mass removal by concentrating extraction on wells with highest VOC concentrations.
- Met with site case worker on July 7, 2009 to discuss current operational data of deeper screened intervals, planned approach for operation and rebound assessments, and eventual soil closure sampling.
- Received acknowledgement of system operational data and site inspection in letter from site case worker dated July 20, 2009. Letter provided direction on what data is required in subsequent quarterly reports so that soil closure sampling plan can be approved and implemented.
- Prepared and submitted VES Operation and Maintenance Report for the 2nd Quarter 2009 on August 13, 2009.
- Operated VES system from beginning of quarter until July 21, 2009, when it was turned off for one month to evaluate rebound of soil vapor concentrations. Restarted system on August 24, 2009. Data indicated rebound of soil vapor concentrations slightly above requirements for shutdown, so operated system for remainder of quarter. System is planned to be operated until approximately October 15, 2009, when another one month rebound assessment will be initiated.

9 Limitations and Professional Certification

This report has been prepared for the exclusive use by Mission as it pertains to the former Mission facility located at 11904-11920 East Washington Street, Santa Fe Springs, California. Services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable qualified environmental consultants practicing at this or similar locations. No other warranty, either expressed or implied, is made as to any professional advice included in this report. These services were performed consistent with the agreement between CGC and Mission.

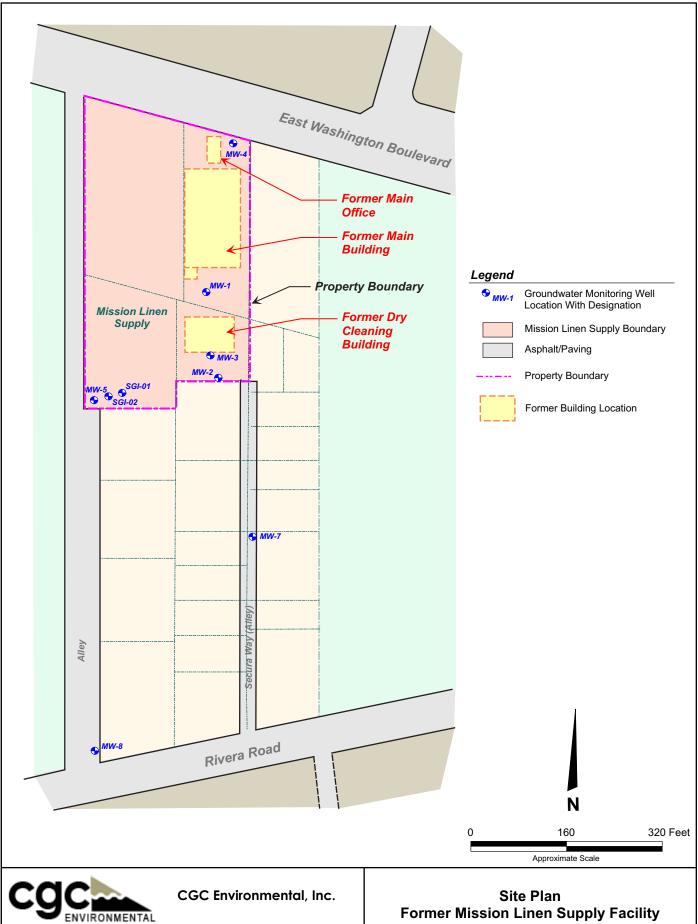

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. CGC and Environmental Risk Solutions, Inc. do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Sincerely,

CGC Environmental, Inc.

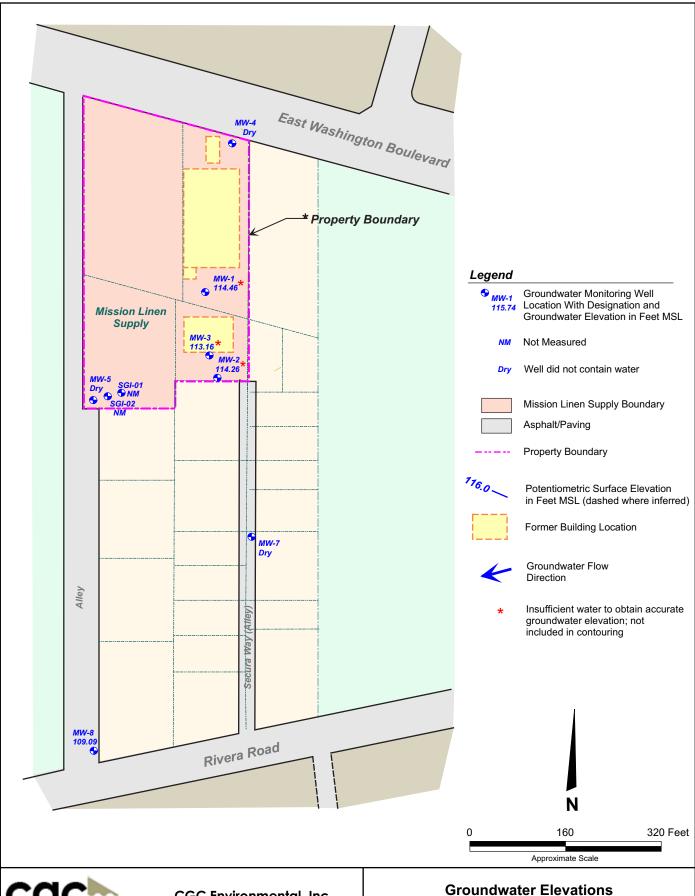
Norman D. Colby, P.G., C.Hg

Principal Hydrogeologist


ENVIRONMENTAL

CGC Environmental, Inc.

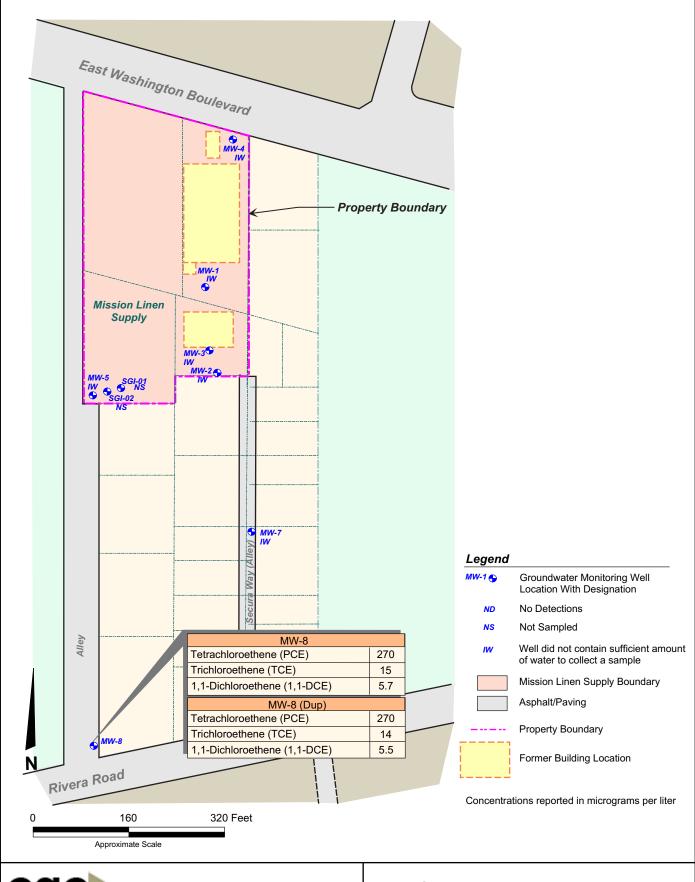
Project Name: Former Mission Linen Supply Facility - Santa Fe Springs, CA


Date: October 2009

Site Location Map Former Mission Linen Supply Facility Santa Fe Springs, California

Project Name: Former Mission Linen Supply Facility - Santa Fe Springs, CA Date:October 2009

Santa Fe Springs, California



CGC Environmental, Inc.

Project Name: Former Mission Linen Supply Facility - Santa Fe Springs, CA Date: October 2009

Third Quarter 2009 (August 2009) **Former Mission Linen Supply Facility** Santa Fe Springs, California

CGC Environmental, Inc.

Project Name: Former Mission Linen Supply Facility - Santa Fe Springs, Ca

Date: October 2009

Groundwater Analytical Results Third Quarter 2009 (August 2009) Former Mission Linen Supply Facility Santa Fe Springs, California

Tables

Table 1

Monitoring Well Construction Details

Former Mission Linea Supply Facility

Former Mission Linen Supply Facility Santa Fe Springs, California

Well	Well Diameter (inches)	Total Depth (feet bgs)	Screened Interval (feet bgs)	Top of Casing Elevation (feet msl)
MW-1	4	40		153.86
MW-2	4	40		153.72
MW-3	4	40		152.42
MW-4	2	45	30-45	155.45
MW-5	2	45	30-45	154.90
MW-7	2	45	30-45	152.54
MW-8	2	45	30-45	151.20
SGI-01	2	55	35-55	155.37
SGI-02	4	55	35-55	154.67

Notes:

bgs = below ground surface

msl = mean sea level

-- = data not available

Wells MW-1 through MW-8 surveyed on June 29, 2004; wells SGI-01 and SGI-02 surveyed August 3, 2005; wells MW-1 through MW-5 resurveyed on February 9, 2006. All wells surveyed by WM Holdings, Inc. to the Los Angeles County Benchmark No. Y-3721 benchmark based on October 1999 survey.

Table based on Rincon July 2004 quarterly report and updated with new survey data.

Table 2

Groundwater Elevations

Third Quarter 2009

Former Mission Linen Supply Facility

11904-11920 E. Washington Boulevard, Santa Fe Springs, California

Well	Casing Elevation	Depth to Groundwater	Groundwater Elevation
MW-1*	153.86	39.40	114.46
MW-2*	153.72	39.46	114.26
MW-3*	152.42	39.26	113.16
MW-4	155.45	dry	
MW-5	154.90	dry	
MW-7	152.54	dry	
MW-8	151.20	42.11	109.09
SGI-01	155.37		
SGI-02	154.67		

Notes:

All water level depths are in feet below top of well casing.

All elevations are in feet above mean sea level (msl)

Depth to groundwater not measured in wells SGI-01 and SGI-02; these wells are currently used for remediation testing purposes only.

Dry = Well did not contain water

Water levels measured August 19, 2009

^{*} Minimal water (less than 0.1 feet) in this well; therefore calculated groundwater elevation is considered unreliable

Table 3

Groundwater Analytical Results

Third Quarter 2009

Former Mission Linen Supply Facility

11904-11920 East Washington Boulevard, Santa Fe Springs, California

Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2-Dichloroethene (cis-1,2- DCE)	Trans-1,2-Dichloroethene (trans-1,2-DCE)	1,1-Dichloroethene (1,1- DCE)	Vinyl Chloride	Chloroform
MW-1	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-2	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-3	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-4	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-5	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-7	8/19/2009	IW	IW	IW	IW	IW	IW	IW
MW-8	8/19/2009	270	15	<2.0	<2.0	5.7	<2.0	<4.0
IW-DUP (MW-8)	8/19/2009	270	14	<2.0	<2.0	5.5	<2.0	<4.0
MCL		5	5	6	10	6	0.5	100.0

Notes:

All concentrations in micrograms per Liter (ug/L)

< = not detected at the detection limit shown

Bold Indicates detection of analyte above MCL

MCL = EPA Region 9 Maximum Contaminant Level for Drinking water

IW = Well did not contain sufficient amount of water to collect a sample

Wells SGI-01 and SGI-02 not sampled during quarterly monitoring; these wells are currently used for remediation testing purposes only. Wells installed March 21, 2005

Table 4

Summary of Duplicate Sample QA/QC Data

Former Mission Linen Supply Facility 11904-11920 East Washington Boulevard, Santa Fe Springs, California

Well ID	Date		Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1-Dichloroethene (1,1- DCE)				
	Sampled		ug/L ^b						
	8/19/2009	Sample	270	15	5.7				
MW-8		Duplicate Sample	270	14	5.5				
		RPD (%) ^a	0.0	6.9	3.6				

NOTES:

a. RPD (%) = Relative Percent Difference reported as percent of 100

b. ug/L = Micrograms per Liter

Appendix A Groundwater Monitoring Field Sampling Forms

WELL GAUGING DATA

Project # <u>0908</u>	19EJ-1	_ Date 8/19/09	Client	CGC	
,		- , .			
Site 11904	E WACHIO	JUA LUT	SAUTA F	= 5P0W65	

					Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)			(ft.)	bottom (ft.)	ŢOÇ	Notes
MU-1	0722	4					39.40	39.44		
	1						, .			
MW-2	0720	4					39.40	39.52		
	<u> </u>						31.16	J / . U C		
MU-3	0746	4					39.24	7670		
1.0	W17W	· · · · · · · · · · · · · · · · · · ·			<u> </u>		57.20	39-28		
MW-4	0706	٦					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1100		
110	0700			·	<u> </u>		DRY	43.46		
MU-5	372 se	2					100			
170 /	0715						DR4	43,82		
50.11-7	090	て					DRY	42.11		
MW-7	0700							72.11		
mu-8	-301h	2					42.11	44.18		
110,8	0847						7 4-11	79.18		
	,									
	· 									
		ĺ								
						<u> </u>				
	 			 						
	<u> </u>				<u> </u>					
		_								
					1					
							 		ļ	
	<u> </u>		L		i	I	i	1 : : :	1	

Project #:	090819	E)-1		Client:	Client: CGC Environmental, Inc.					
	E. 10			Start Date:	8/	19/09	William			
l .	: Mu-			Well Diam	eter: 2	3 4	6 8	77.44		
Total We	ll Depth:	39.4	' Y	Depth to W	Depth to Water 39.40					
Depth to	Free Produ			Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC		Flow Cell		YSI 556				
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing					Peristaltic P New Tubing		Bladder Pump Other	18/41		
Flow Rate:				***************************************	Pump Depth	ı: <u> </u>				
Time	Temp.	pН	Cond. (mS or μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW		
INS	UFF I CEN	- (US TER	72)	PURGE	OR	SAMPLO			
_/ υ,	<u> </u>	SA	JATER 1 PLU	TAIC						
			/			/				
		/	/							
						/				
								,,		
								•		
				,	/					
	/			į.						
Did well	dewater?	Yes	No		Amount a	ctually e	vacuated:			
Sampling	Time:				Sampling	Date:	And the second s			
Sample I.	D.:				Laborator	Sindalate agence.	Test America			
Analyzęd	for:		VOC	"s by 8260B		Other:				
Equipmer	ıt Blank I.	D.:	@ Time		Duplicate	I.D.:				

Project #:	0908191	EJ-1		Client:	Client: CGC Environmental, Inc.					
Sampler:	E.	JOHNSO	<i>ب</i> ہ	Start Date:	8	119/09				
Well I.D.	: Mu.	- ک		Well Diam	Well Diameter: 2 3 <u>4</u> 6 8					
	ll Depth:		7_	Depth to V	Depth to Water 39.46					
Depth to	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC		Flow Cell	Туре:	YSI 556				
Purge Metho Sampling M Flow Rate:	lethod:	2" Grundfo Dedjeated	-		Peristaltic P New Tubing Pump Deptl	g	Bladder Pump Other_			
Time	Temp.	рН	Cond. (mS or μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW		
IN	SUFFICE	Γ	USTER	70	PURGE	OR	SAM PLES.			
	VO	EL	in PLE	TAK	<i>∂,</i> ~					
				/						
	/									
			/			,				
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	/									
/										
					/					
Did well	dewater?	Yes	Ng		Amount a	l actually ε	evacuated:			
Sampling	Time:				Sampling					
Sample I.	D.: /	/			Laborato		Test America			
Analyzed	for:		VOC	C's by 8260B		Other:	- vot limitica			
Equipmen	nt Blank I.	D.:	@ Time		Duplicate		. >	~		

Project #:	09080	19 ED-1		Client:	Client: CGC Environmental, Inc.						
Sampler:			•	Start Date:	8/1	9/09					
Well I.D.:	: Mu	<u>'-3</u>		Well Diam	Well Diameter: 2 3 4 6 8						
Total Wel	ll Depth:	39.2	ઇ	Depth to V	Depth to Water 39.26						
Depth to	Free Produ	ıct:		Thickness	Γhickness of Free Product (feet):						
Reference	ed to:	PVC		Flow Cell	Flow Cell Type: YSI 556						
Purge Metho Sampling M Flow Rate:		2" Grundfo Dedicated	-		Peristaltic Pump New Tubing Other Pump Depth:						
Time	Temp.	pН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
INSUFF	(CENT	US7	EN 7	70 P.	ROF	or s	AMPLE.				
NO	5 _A	nper	TAK								
			1								
		/									
		/									
:											
		/		/							
Did well	dewater?	Yes	No		Amount:	l actually e	vacuated.	and the second s			
Sampling					Sampling	···	vuotajeu.	***************************************			
Sample I.							TT				
Analyzed			X/O/	71. L. 03.(AD	Laborato		Test America				
	nt Blank I.	D.	@	C's by 8260B		Other:					
Edaibme	n Dialik I.	D. .	Time		Duplicate I.D.:						

Project #:	090819	EJ-1		Client:	Client: CGC Environmental, Inc.						
Sampler:			<i>ہ</i>	Start Date:	Start Date: 8/19/0 9						
Well I.D.:				Well Diam	Well Diameter: ② 3 4 6 8						
Total Wel	ll Depth:	43.46		Depth to W	Depth to Water — Def						
Depth to	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):						
Reference	ed to:	PVC		Flow Cell	Туре:	YSI 556	5				
Purge Metho Sampling M Flow Rate:	ethod:	2" Grundfo Dedicated			Peristaltic P New Tubing Pump Depth	3	Bladder Pump Other_				
Time	Temp.	pН	Cond. (mS or μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
د د	80L	15	DRY	رادر ا	SAM	りしじ	TAKEN				
			<u> </u>	(
	nite and the second										
							·				
			/								
					/						
Did well	dewater?	Yes	No		Amount a	actually	evacuated:				
Sampling	Time:				Sampling	Date:					
Sample I.	D.:				Laborato	ry:	Test America				
Analyzed	for:		voc	C's by 8260B		Other:					
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:	Duplicate I.D.:				

Project #:	: 09081	9EJ-1		Client:	Client: CGC Environmental, Inc.						
	E.		دِہ	Start Date:	8/1	9/09					
Well I.D.		-		Well Diam	eter: 🔾	3 4	6 8				
Total We	ll Depth:	43.	87	Depth to W	Depth to Water DRY						
Depth to	Free Produ				Thickness of Free Product (feet):						
Reference	ed to:	PVC		Flow Cell	Туре:	YSI 556					
Purge Methor Sampling M Flow Rate:	lethod:	2" Grundfo Dedicated	, · ·		Peristaltic Pump New Tubing Other Pump Depth:						
Time	Temp.	pН	Cond. (mS or μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
well	15	DA	Y 1	NO 54.	4 PLY	TAK	er				
				:				·			
							_				
			<u> </u>				/				
						/ """					
Did well	dewater?	Yes	No		Amount	actually e	vacuated:				
Sampling	Time:				Samplin	g Date:					
Sample I.	.D.;				Laborato	ory:	Test America				
Analyzed	for:		VOC	C's by 8260B		Other:					
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:					

Project #: 090819 Ej-1				Client: CGC Environmental, Inc.						
Sampler: E. JOHNSON				Start Date: 8/19/09						
Well I.D.: Mルーフ				Well Diameter: 2 3 4 6 8						
Total Well Depth: 42.11				Depth to Water りょく						
Depth to Free Product:				Thickness of Free Product (feet):						
Referenced to: PVC				Flow Cell Type: YSI 556						
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing				Peristaltic Pump Bladder Pump New Tubing Other						
Flow Rate:				Pump-Depth:						
Time	Temp. (°C or °F)	pН	Cond. (mS or μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW		
Wer	(S	C	DRY)	NO	SAM	Put	TAKEN.			
			/							
		/								
							1			
Did well dewater? Yes No					Amount actually evacuated:					
Sampling Time:					Sampling Date:					
Sample I.D.:					Laboratory:		Test America			
Analyzed for: Voc				C's by 8260B	Other:					
Equipment Blank I.D.:					Duplicate I.D.:					
					- apriouto 1.D					

Project #: 09 0819 == 1				Client: CGC Environmental, Inc.						
Sampler: E. Johnson				Start Date: 8/,9/09						
Well I.D.: Mw- 8				Well Diam			6 8			
Total Well Depth: 44.18				Depth to Water 42.17						
Depth to Free Product:				Thickness of Free Product (feet):						
Referenced to: PVC				Flow Cell Type: YSI 556						
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing				Peristakic Pump New Tubing			Bladder Pump Other 15 18 RALLEN			
Flow Rate:					Pump Depth:					
Time	Temp. (ੴ or °F)	pН	Cond. (mS or µŜ)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW		
1019	22-98	7-17	1645	> /200	6.66	1504	0-33			
1026	22.69	7.27	1700	7/000	6-04.	148.1	0.66			
1033	22-31	7.37	1758	7/200	5.96	147.6	0.99			
1 cv	= ७.३३	X	3	= 0.99	TOTAL	PURG	U,			
80%	RECUAR	GE.	۵	4252						
<i>10.</i> ¥3								42.38		
				S. P. Sandara						
	·									
INSU	FICENT	UNT	ER TO	PURGE	WIT2/	LOW FL.). Remover	3 Chee noc		
Did well dewater? Yes 10				Amount actually evacuated: 1 644				1 6AC		
Sampling Time: 1045				Sampling Date: 8			8/19/59	- / -		
Sample I.D.: Mひ- &				Laboratory:		STL-SFO				
Analyzed for: VOC				's by 8260B		Other:				
Equipment Blank I.D.: @					Duplicate I.D.:					

WELLHEAD INSPECTION CHECKLIST Client CGC ENUIRMONTAL Date 8/19/09 Site Address 11904 E WASHINGTON AUG Technician E. Johnson Job Number 09081965-1 WELL IS Well **CLEARLY** Other Well Not WELL IS Water Inspected -Wellbox Action Repair MARKED WITH SECURABLE Bailed Cap Lock Inspected No Corrective THE WORDS Components Taken Order Replaced Replaced From (explain BY DESIGN Action Submitted Cleaned (explain "MONITORING (12"or less) Wellbox below) Required WELL" below) Well ID (12"or less) MW-1 MW.7 MU-3 MW-4 MW-5 MW-7 114-8 NOTES: MU-1 MISSING BOUTS, MU-8 MISSING LBOOT MU-7 BOLTS DON'T SCEW DOWN ALLTHE WAY

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainetech.com

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	PROJECT NAME MISSION	55107 LO188			- 11		
		2021		PROJECT NUMBER	IBER OYORIS ELL	(7)	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT RFADING	CALIBRATED TO:		
	06F2009AC	69/61/8	- 11	II.	10%: NIII I N NO N N N N N N N N N N N N N N	- -	INJTIALS
		0915	40 7				P
			HO 01	10.01	/:) Yef	1.661	30
)-01		
			DU 10072 SAT	98.7	₹. Æ.	19,07	8
			ORD 237.5	2775	1	; 	9
						A C (2)	
		,					
				,,,			
			-	,,,,			

SPH Drum Log Sheet

\sim			10	٠.,	17	1	1				4.5	
S	1	٠,	Δ.	· 2	١.	а	А	77	_	c	c	,
u	1	L١	٠.	Γ	v	ш	u	.1		2	a	

STATUS OF DRUM(S) UPON	I ARRIVA	NL CONTRACTOR		
	8 19/9			
Number of drum(s) empty:	3			
Number of drum(s) 1/4 full:	Ð			
Number of drum(s) 1/2 full:	0			
Number of drum(s) 3/4 full:	D			
Number of drum(s) full:	0			
Total drum(s) on site:	'3			
Are the drum(s) properly labeled?				
If any drum(s) are partially or totally filled, what is the first use date:	NA			

If you add any product to an empty or partially filled drum, make sure the drum has at least 20 gals. of water in it first. Just offload purgewater into the drum, or DI water.

The drum MUST be steel AND labeled with the appropriate label.

STATUS OF DRUM(S) UPON	UDEPAR	TURE			
Date	B 19 59			1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ommasjunegajijajijinini
Number of drums empty:	4				
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:	О				
Number of drum(s) 3/4 full:	0				
Number of drum(s) full:	0				
Total drum(s) on site:	⁻				
Are the drum(s) properly labeled?	ላዩን				

	LOCA		DE DRU	JM(S)						
	Describ	e locatio	on of dru	m(s)·					7-10179-1111110-0-1-12-2-	in an particular description of the second
l					In C	Oldbary)			

FINAL STATUS				
Number of new drum(s) left on site this event	y and a supply of the supply o	nestiese til Ermennes retinus (tilbisher	ramena miritari	
Date of inspection:				
Logged by BTS Field Tech:				
Office reviewed by:				

Please Notify Properity Owners of any Drums left onsite

Appendix B Laboratory Data and Chain of Custody Records

ANALYTICAL REPORT

Job Number: 720-22067-1

Job Description: Mission Linen/Santa Fe Springs

For:

CGC Environmental,Inc. 16596 Tiburon Place Huntington Beach, CA 92649

Attention: Ms. Karen Colby

Approved for releas Afsaneh Salimpour Project Manager I 8/28/2009 3:45 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 08/28/2009

Asaref Sal

cc: Mr. Norm Colby

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-J22067-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
-						
720-22067-1	MW-8					
1,1-Dichloroethene		5.7	2.0	ug/L	8260B	
Tetrachloroethene		270	2.0	ug/L	8260B	
Trichloroethene		15	2.0	ug/L	8260B	
720-22067-2	MW-DUP					
1,1-Dichloroethene		5.5	2.0	ug/L	8260B	
Tetrachloroethene		270	2.0	ug/L	8260B	
Trichloroethene		14	2.0	ug/L	8260B	

METHOD SUMMARY

Client: CGC Environmental,Inc.

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL SF	SW846 8260B	
Purge and Trap	TAL SF		SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 720-22067-1

METHOD / ANALYST SUMMARY

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Method	Analyst	Analyst ID
SW846 8260B	Zhao, June	JZ

SAMPLE SUMMARY

Client: CGC Environmental,Inc. Job Number: 720-22067-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-22067-1	MW-8	Water	08/19/2009 1045	08/21/2009 0952
720-22067-2	MW-DUP	Water	08/19/2009 1050	08/21/2009 0952

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Client Sample ID: MW-8

 Lab Sample ID:
 720-22067-1
 Date Sampled: 08/19/2009 1045

 Client Matrix:
 Water
 Date Received: 08/21/2009 0952

8260B Volatile Organic Compounds (GC/MS)

 Method:
 8260B
 Analysis Batch: 720-56420
 Instrument ID:
 HP5

 Preparation:
 5030B
 Lab File ID:
 08260907.D

Dilution: 4.0 Initial Weight/Volume: 10 mL
Date Analyzed: 08/26/2009 1947 Final Weight/Volume: 10 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		2.0
Acetone	ND		200
Benzene	ND		2.0
Dichlorobromomethane	ND		2.0
Bromobenzene	ND		4.0
Chlorobromomethane	ND		4.0
Bromoform	ND		4.0
Bromomethane	ND		4.0
2-Butanone (MEK)	ND		200
n-Butylbenzene	ND		4.0
sec-Butylbenzene	ND		4.0
tert-Butylbenzene	ND		4.0
Carbon disulfide	ND		20
Carbon tetrachloride	ND		2.0
Chlorobenzene	ND		2.0
Chloroethane	ND		4.0
Chloroform	ND		4.0
Chloromethane	ND		4.0
2-Chlorotoluene	ND		2.0
4-Chlorotoluene	ND		2.0
Chlorodibromomethane	ND		2.0
1,2-Dichlorobenzene	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,3-Dichloropropane	ND		4.0
1,1-Dichloropropene	ND		2.0
1,2-Dibromo-3-Chloropropane	ND		4.0
Ethylene Dibromide	ND		2.0
Dibromomethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
1,1-Dichloroethane	ND		2.0
1,2-Dichloroethane	ND		2.0
1,1-Dichloroethene	5.7		2.0
cis-1,2-Dichloroethene	ND		2.0
trans-1,2-Dichloroethene	ND		2.0
1,2-Dichloropropane	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
Ethylbenzene	ND		2.0
Hexachlorobutadiene	ND		4.0
2-Hexanone	ND		200
Isopropylbenzene	ND		2.0
4-Isopropyltoluene	ND		4.0
Methylene Chloride	ND		20
4-Methyl-2-pentanone (MIBK)	ND		200
Naphthalene	ND		4.0

Analytical Data

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Client Sample ID: MW-8

 Lab Sample ID:
 720-22067-1
 Date Sampled: 08/19/2009 1045

 Client Matrix:
 Water
 Date Received: 08/21/2009 0952

8260B Volatile Organic Compounds (GC/MS)

Method: 8260B Analysis Batch: 720-56420 Instrument ID: HP5 Preparation: 5030B Lab File ID: 08260907.D Dilution: 4.0 Initial Weight/Volume: 10 mL 08/26/2009 1947 Date Analyzed: Final Weight/Volume: 10 mL

Analyte	Result (ug/L)	Qualifier	RL
N-Propylbenzene	ND		4.0
Styrene	ND		2.0
1,1,1,2-Tetrachloroethane	ND		2.0
1,1,2,2-Tetrachloroethane	ND		2.0
Tetrachloroethene	270		2.0
Toluene	ND		2.0
1,2,3-Trichlorobenzene	ND		4.0
1,2,4-Trichlorobenzene	ND		4.0
1,1,1-Trichloroethane	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Trichloroethene	15		2.0
Trichlorofluoromethane	ND		4.0
1,2,3-Trichloropropane	ND		2.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
1,2,4-Trimethylbenzene	ND		2.0
1,3,5-Trimethylbenzene	ND		2.0
Vinyl acetate	ND		40
Vinyl chloride	ND		2.0
Xylenes, Total	ND		4.0
2,2-Dichloropropane	ND		2.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	74		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130
Toluene-d8 (Surr)	90		70 - 130

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Client Sample ID: MW-DUP

Lab Sample ID: 720-22067-2 Date Sampled: 08/19/2009 1050

Client Matrix: Water Date Received: 08/21/2009 0952

8260B Volatile Organic Compounds (GC/MS)

Method: 8260B Analysis Batch: 720-56420 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 08260908.D

 Dilution:
 4.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 08/26/2009 2018
 Final Weight/Volume:
 10
 mL

Acetone ND 200 Benzene ND 2.0 Dichlorobromomethane ND 2.0 Bromobenzene ND 4.0 Chlorobromomethane ND 4.0 Bromoform ND 4.0 Bromomethane ND 4.0 2-Butanone (MEK) ND 200 n-Butylbenzene ND 4.0 sec-Butylbenzene ND 4.0 sec-Butylbenzene ND 4.0 Carbon disulfide ND 20 Carbon disulfide ND 2.0 Chlorobenzene ND 2.0 Chlorobenzene ND 4.0 Chlorobethane ND 4.0 Chloroform ND 4.0 Chloroformethane ND 4.0 Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 <t< th=""><th>Analyte</th><th>Result (ug/L) Qua</th><th>alifier RL</th></t<>	Analyte	Result (ug/L) Qua	alifier RL
Benzene	Methyl tert-butyl ether	ND	2.0
Dichlorobromomethane ND 4.0 Bromobenzene ND 4.0 Chlorobromomethane ND 4.0 Bromoform ND 4.0 Bromomethane ND 4.0 2-Butanone (MEK) ND 4.0 Description of MeK) ND 4.0 Patrylbenzene ND 4.0 sec-Butylbenzene ND 4.0 cerben disulfide ND 4.0 Carbon disulfide ND 2.0 Carbon disulfide ND 2.0 Chlorobethane ND 2.0 Chloroferm ND 4.0 Chloroform ND 4.0 Chlorofibrane ND 2.0 Chloroforbane ND 2.0 Chloroforbane </td <td>Acetone</td> <td>ND</td> <td>200</td>	Acetone	ND	200
Brombenzene ND 4.0 Chlorobromomethane ND 4.0 Bromonform ND 4.0 Bromomethane ND 4.0 2-Butanone (MEK) ND 200 n-Butylbenzene ND 4.0 tert-Butylbenzene ND 4.0 tert-Butylbenzene ND 4.0 Carbon disulfide ND 20 Carbon disulfide ND 20 Carbon tetrachloride ND 2.0 Chlorobenzene ND 4.0 Chlorotelane ND 4.0 Chlorotelane ND 4.0 Chlorotelane ND 4.0 Chlorotoluene ND 4.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 1-Dichlorobenzene ND 2.0 1-1-Dichlorobenzene ND 2.0 <	Benzene	ND	2.0
Chlorobromomethane ND 4.0 Bromoform ND 4.0 Bromomethane ND 4.0 2-Butanone (MEK) ND 200 n-Bulybenzene ND 4.0 sec-Butylbenzene ND 4.0 sec-Butylbenzene ND 4.0 carbon disulfide ND 20 Carbon disulfide ND 20 Carbon tetrachloride ND 2.0 Chlorobenzene ND 4.0 Chlorobenzene ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chlorotolluene ND 2.0 4-Chlorotolluene ND 2.0 4-Chlorotolluene ND 2.0 1-2-Dichlorobenzene ND 2.0 1-2-Dichlorobenzene ND 2.0 1-3-Dichlorobenzene ND 2.0	Dichlorobromomethane	ND	2.0
Bromoform ND 4.0 Bromomethane ND 4.0 2-Butanone (MEK) ND 200 -Butybenzene ND 4.0 see-Butybenzene ND 4.0 tert-Butybenzene ND 4.0 carbon disulfide ND 20 Carbon disulfide ND 2.0 Chlorobenzene ND 2.0 Chlorobenzene ND 4.0 Chlorobenzene ND 4.0 Chloroform ND 4.0 Chlorodoluene ND 4.0 Chlorodoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,2-Dichloropenzene ND 2.0 1,3-Dichloropenzene ND 2.0 1,1-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 Ethylene Dibromide ND 2.0	Bromobenzene	ND	4.0
Bromomethane	Chlorobromomethane	ND	4.0
2-Butanone (MEK) ND 200 n-Butylbenzene ND 4.0 sec-Butylbenzene ND 4.0 tert-Butylbenzene ND 4.0 carbon disulfide ND 20 Carbon disulfide ND 20 Carbon disulfide ND 20 Chlorobenzene ND 2.0 Chloroethane ND 4.0 Chloroethane ND 4.0 Chloroethane ND 4.0 Chloroethane ND 4.0 Chloroethane ND 2.0 1.2-Dichlorobenzene ND 2.0 1.3-Dichloropenzene ND 2.0 1.1-Dichloropenzene ND 2.0 1.1-Dichlorofiluromethane ND 2.0 1.1-Dichloroethane ND 2.0 1.1-Dichloroethene ND 2.0 1.1-Dichloroethene ND 2.0 1.1-Dichloropenpene ND 2.0 1.1-Dichloroethene ND 2.0 1.1-Dichloropenpene ND 2.0 1.1-Dichloroethene ND 2.0 1.1-Dichloropenpene ND 2.0 1.1-Dichloroethene ND 2	Bromoform	ND	4.0
Authorized Aut	Bromomethane	ND	4.0
sec-Butylbenzene ND 4.0 Lert-Butylbenzene ND 4.0 Carbon disulfide ND 20 Carbon tetrachloride ND 2.0 Chlorobenzene ND 2.0 Chlorotelmane ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,2-Dichloropropane ND 2.0 1,3-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 1,1-Dichloropropane ND <	2-Butanone (MEK)	ND	
tert-Butylbenzene ND 4.0 Carbon disulfide ND 20 Carbon tertachloride ND 2.0 Chlorobenzene ND 4.0 Chloroethane ND 4.0 Chloromethane ND 4.0 Chlorofolouren ND 2.0 C-Chlorotoluene ND 2.0 C-Chlorotoluene ND 2.0 C-Chlorodibromomethane ND 2.0 C-Chlorodibromomethane ND 2.0 C-Lorodibromomethane ND 2.0 C-Lorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 2.0 1,2-Dichloropropane ND 4.0 1,1-Dichloropropane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethene ND 2.0 1,2-Dichlorop	n-Butylbenzene	ND	
Carbon disulfide ND 20 Carbon tetrachloride ND 2.0 Chlorobenzene ND 2.0 Chloroethane ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chlorotoluene ND 4.0 4-Chlorotoluene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,2-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,1-Dichloropropane ND 2.0 1,2-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 Dibromomethane ND 2.0 Dichloropropane ND 2.	sec-Butylbenzene	ND	
Carbon tetrachloride ND 2.0 Chlorobenzene ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chloroformehane ND 4.0 Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodifbromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene ND 2.0 1,2-Dichloropropane	tert-Butylbenzene	ND	4.0
Chlorobenzene ND 2.0 Chlorothane ND 4.0 Chloroform ND 4.0 Chlorothuene ND 4.0 2-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 2.0 1,4-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dibromomethane ND 2.0 Dichlorotifluoromethane ND 2.0 1,1-Dichlorothane ND 2.0 1,1-Dichlorothane ND 2.0 1,1-Dichlorothene ND<	Carbon disulfide	ND	20
Chloroethane ND 4.0 Chloroform ND 4.0 Chloroform ND 4.0 Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,3-Dichloropropane ND 2.0 1,4-Dichloropropane ND 2.0 1,2-Dichloropropane ND 4.0 1,1-Dichloropropane ND 2.0 1,2-Dichloropropane ND 4.0 Ethylene Dibromide ND 2.0 Ltylorom-3-Chloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dibrillorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethene ND 2.0 1,2-Dichloropro	Carbon tetrachloride		
Chloroform ND 4.0 Chloromethane ND 4.0 2-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,3-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 4.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropane ND 4.0 1,2-Dichromo-3-Chloropropane ND 2.0 1,1-Dichloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dichlorodiflaromethane ND 2.0 Dichlorodiflaromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,2-Dichloroethene ND 2.0 cis-1,2-Dichloroethene ND 2.0 cis-1,2-Dichloroptopane ND 2.0	Chlorobenzene	ND	
Chloromethane ND 4.0 2-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,3-Dichloroperopane ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropane ND 4.0 1,1-Dichloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0	Chloroethane		
2-Chlorotoluene ND 2.0 4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 1,2-Dibromo-3-Chloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroptopane ND 2.0 cis-1,3-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 thylance ND 2.0 tethylenzene ND 2.0 thylance	Chloroform	ND	
4-Chlorotoluene ND 2.0 Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 2.0 1,3-Dichloropropane ND 2.0 1,1-Dichloropropane ND 2.0 1,2-Dibromo-3-Chloropropane ND 2.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dibrhorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropthene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 2.0 Isopropylbenzene ND 4.0 4-Isopropylbenzene ND 4.0 4-Isopropylbenzen	Chloromethane		
Chlorodibromomethane ND 2.0 1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichloropropane ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,2-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropropene ND 2.0 trans-1,2-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND	2-Chlorotoluene	ND	
1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene ND 2.0 1,2-Dichloroethene ND 2.0 1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 1,2-Dichloropropene ND 2.0 1,3-Dichloropropene ND 2.0 1,3-Dichloropropene ND 2.0 1,3-Dichloropropene ND 2.0 1,4-Byloropropene ND 2.0 1,4-Byloropropene ND 4.0 1,4-Byloropropene ND 2.0 1,4-Byloropyllolue	4-Chlorotoluene		
1,3-Dichlorobenzene ND 2.0 1,4-Dichlorobenzene ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 2.0 2-Hexanone ND 2.0 4-Isopropyltoluene ND 2.0 4-Isopropyltoluene ND 2.0 4-Methyl	Chlorodibromomethane		
1,4-Dichlorobenzene ND 2.0 1,3-Dichloropropane ND 4.0 1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene ND 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropropane ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 2.0 2-Hexanone ND 2.0 Isopropyltoluene ND 2.0 4-Isopropyltoluene ND 2.0 4-Methyl-2-pentanone (MIBK) ND 20 <td>1,2-Dichlorobenzene</td> <td></td> <td></td>	1,2-Dichlorobenzene		
1,3-Dichloropropane ND 4.0 1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene ND 2.0 cis-1,2-Dichloroethene ND 2.0 ctrans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 texanone ND 2.0 2-Hexanone ND 2.0 2-Hexanone ND 2.0 4-Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 2.0 4-Me	1,3-Dichlorobenzene		
1,1-Dichloropropene ND 2.0 1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 2.0 2-Hexanone ND 2.0 Isopropylbenzene ND 2.0 4-Isopropylbenzene ND 2.0 4-Isoprop	1,4-Dichlorobenzene		
1,2-Dibromo-3-Chloropropane ND 4.0 Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodiffuoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 2.0 2-Hexanone ND 2.0 Isopropylbenzene ND 2.0 4-Isopropylteluene ND 2.0 4-Isopropyltoluene ND 2.0 4-Methyl-2-pentanone (MIBK) ND 20	1,3-Dichloropropane		
Ethylene Dibromide ND 2.0 Dibromomethane ND 2.0 Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 thylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 2.0 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
Dibromomethane ND 2.0 Dichlorodiffluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Hexachlorobutadiene ND 2.0 4-Hexanone ND 4.0 lsopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 20			
Dichlorodifluoromethane ND 2.0 1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 2.0 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 2.0 4-Methyl-2-pentanone (MIBK) ND 20			
1,1-Dichloroethane ND 2.0 1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 2.0 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 20			
1,2-Dichloroethane ND 2.0 1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 20			
1,1-Dichloroethene 5.5 2.0 cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 4.0 4-Methyl-2-pentanone (MIBK) ND 20			
cis-1,2-Dichloroethene ND 2.0 trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 4.0 4-Methyl-2-pentanone (MIBK) ND 20	·		
trans-1,2-Dichloroethene ND 2.0 1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
1,2-Dichloropropane ND 2.0 cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200	•		
cis-1,3-Dichloropropene ND 2.0 trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
trans-1,3-Dichloropropene ND 2.0 Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
Ethylbenzene ND 2.0 Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
Hexachlorobutadiene ND 4.0 2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
2-Hexanone ND 200 Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200	•		
Isopropylbenzene ND 2.0 4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
4-Isopropyltoluene ND 4.0 Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
Methylene Chloride ND 20 4-Methyl-2-pentanone (MIBK) ND 200			
4-Methyl-2-pentanone (MIBK) ND 200			
Naphthalene ND 4.0			
	Naphthalene	ND	4.0

Analytical Data

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-22067-2
 Date Sampled: 08/19/2009 1050

 Client Matrix:
 Water
 Date Received: 08/21/2009 0952

8260B Volatile Organic Compounds (GC/MS)

Method: 8260B Analysis Batch: 720-56420 Instrument ID: HP5 Preparation: 5030B Lab File ID: 08260908.D Dilution: Initial Weight/Volume: 4.0 10 mL 08/26/2009 2018 Date Analyzed: Final Weight/Volume: 10 mL

Analyte	Result (ug/L)	Qualifier	RL
N-Propylbenzene	ND		4.0
Styrene	ND		2.0
1,1,1,2-Tetrachloroethane	ND		2.0
1,1,2,2-Tetrachloroethane	ND		2.0
Tetrachloroethene	270		2.0
Toluene	ND		2.0
1,2,3-Trichlorobenzene	ND		4.0
1,2,4-Trichlorobenzene	ND		4.0
1,1,1-Trichloroethane	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Trichloroethene	14		2.0
Trichlorofluoromethane	ND		4.0
1,2,3-Trichloropropane	ND		2.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
1,2,4-Trimethylbenzene	ND		2.0
1,3,5-Trimethylbenzene	ND		2.0
Vinyl acetate	ND		40
Vinyl chloride	ND		2.0
Xylenes, Total	ND		4.0
2,2-Dichloropropane	ND		2.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	71		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		67 - 130
Toluene-d8 (Surr)	88		70 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: CGC Environmental,Inc. Job Number: 720-22067-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-56420	0				
LCS 720-56420/4	Lab Control Sample	T	Water	8260B	
LCSD 720-56420/5	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-56420/6	Method Blank	Т	Water	8260B	
720-22067-1	MW-8	Т	Water	8260B	
720-22067-2	MW-DUP	Т	Water	8260B	

Report Basis

T = Total

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Units: ug/L

Method Blank - Batch: 720-56420

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-56420/6 Analysis Batch: 720-56420 Client Matrix: Water Prep Batch: N/A

Client Matrix: Water
Dilution: 1.0

Date Analyzed: 08/26/2009 1846 Date Prepared: 08/26/2009 1846

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Method Blank - Batch: 720-56420

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-56420/6 Client Matrix: Water

66420/6 Analysis Batch: 720-56420 Prep Batch: N/A Instrument ID: Agilent75MSD
Lab File ID: 08260905.D
Initial Weight/Volume: 10 mL

Dilution: 1.0

Units: ug/L

Final Weight/Volume: 10 mL

Date Analyzed: 08/26/2009 1846 Date Prepared: 08/26/2009 1846

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	79	67 - 130	
1,2-Dichloroethane-d4 (Surr)	105	67 - 130	
Toluene-d8 (Surr)	96	70 - 130	

Client: CGC Environmental.Inc. Job Number: 720-22067-1

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 720-56420 Preparation: 5030B

Analysis Batch: 720-56420 LCS Lab Sample ID: LCS 720-56420/4 Instrument ID: Agilent75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 08260903.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

08/26/2009 1744 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 08/26/2009 1744

LCSD Lab Sample ID: LCSD 720-56420/5 Analysis Batch: 720-56420 Instrument ID: Agilent75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 08260904.D

Units: ug/L Dilution: 1.0 Initial Weight/Volume: 10 mL 08/26/2009 1815 Date Analyzed: Final Weight/Volume: 10 mL 08/26/2009 1815

% Rec. **RPD** Analyte LCS LCSD Limit RPD Limit LCS Qual LCSD Qual Benzene 107 108 80 - 130 20 1 Chlorobenzene 103 103 80 - 122 1 20 1,1-Dichloroethene 101 103 76 - 128 1 20 Toluene 107 107 80 - 126 1 20 Trichloroethene 108 109 72 - 138 1 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 112 110 67 - 130 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 99 70 - 130 Toluene-d8 (Surr) 102 102

Date Prepared:

RELEASED BY SHIPPED VIA	RELEASED BY	KELEASED BY	SAMPLING			MW-DUP	MW-8	WANTE OF THE PARTY.	SAMPLE I.D.				SITE	CLIENT	CHAIN OF CUSTODY	TECH SERVICES, INC.
	NICOP	Thron	BATE TIME			8/19/69 1050	Shot Sofule		DATE TIME		Santa Fe Springs, CA	11904-11920 East Washington Blvd.	Mission Linen Supply	CGC Environmental, Inc	TODY BTS#	
			SAMPLING PERFORMED BY			2	5 W 3		S= S TOTAL	×		East Washing	Supply	mental, Inc.	#	SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555
			BY ERIC			02	(0)		AL.	CONTAINERO	CONTANTO	gton Blvd.				EALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555
DATE SENT	DATE	10018/09/07	Johnson			X	×			Compo	_	_	CONT	AINEF	RS	
TIME SENT	TIME / KOO	1600	\(\sigma_{\sigma}\)													
RECEIVED BY	RECEIVED BY	RECEIVED BY														
얼뭐	F&DEN	BY //	RESULTS NEEDE NO LATER THAN				RL= 1 ug/L for Chloroform	RL= 2.5ug/L for	ADD'L IN	Attn: Afsaneh	ncolby	Attn:	Invoic	SPECIA		ALL AN
200	8	co/e	Ü				m L for	y'L for	ADD'L INFORMATION	Forward samples to STL - San Francisco Lab (ASAP) Attn: Afsaneh	ncolby@cgcenvironmental.com	Attn: Norman Colby	Invoice and Report to: CGC Environmental, Inc.	SPECIAL INSTRUCTIONS	OTHER	S MUST
		11	As Contracted						STATUS	L - San Francis	mental.com	lby	t to : CGC I	S		Test America (STL MEET SPECIFICATIO ORNIA DHS AND
P-Z(-0)	DATE /09	8/17/09	2						CONDITION	co Lab (ASAP	SL204	Globe	Environmen		The state of the GION	(STL)
TIME 7.52	I'ME	TIME 90	1.40	Paç	ge 16	of 17			LAB SAMPLE #		SL2041B1503	Global I D#	tal, Inc.		7	DETECTION 28/2009

Login Sample Receipt Check List

Client: CGC Environmental,Inc. Job Number: 720-22067-1

Login Number: 22067 List Source: TestAmerica San Francisco

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Appendix C Historical Groundwater Elevations

Historical Groundwater Elevations
December 2000 through August 2009
Former Mission Linen Supply Facility
11904-11920 E. Washington Boulevard, Santa Fe Springs, California

Well	asing Elevation ¹ (Feet)	Date	Groundwater Depth (Feet) ²	Groundwater Elevation (Feet msl) ³
MW-1	151.60	12/5/2000	26.56	125.04
		3/15/2001	25.50	126.10
	Ī	6/19/2001	24.27	127.33
	Ī	9/24/2001	28.06	123.54
	Ī	11/20/2001	29.30	122.30
	Ī	3/12/2002	26.65	124.95
	Ī	5/23/2002	28.17	123.43
	Ī	9/4/2002	31.40	120.20
		12/12/2002	32.64	118.96
	Ī	2/26/2003	30.91	120.69
		6/5/2003	28.78	122.82
	Ī	8/27/2003	32.48	119.12
		12/9/2003	35.86	115.74
	Ī	2/24/2004	36.71	114.89
	153.86	6/29/2004	37.35	116.51
		8/12/2004	38.12	115.74
	Ī	11/15/2004	Dry	Dry
		3/7/2005	38.48	115.38
		5/23/2005	31.49	122.37
	Ī	8/11/2005	29.25	124.61
		12/2/2005	30.62	123.24
1	Ţ	2/9/2006	30.39	123.47
1	Ţ	5/11/2006	28.23	125.63
1	Ţ	8/30/2006	29.04	124.82
1	Ţ	11/9/2006	30.90	122.96
1	Ţ	2/21/2007	30.38	123.48
1	ļ	5/22/2007	28.58	125.28
	Ī	8/28/2007	31.78	122.08
		11/12/2007	34.75	119.11
	Ī	2/18/2008	35.60	118.26
	Ī	5/12/2008	34.38	119.48
	Ī	8/27/2008	37.15	116.71
	Ī	11/10/2008	39.48	114.38
	Ī	2/26/2009	39.51	114.35
	Ī	5/11/2009	Dry	Dry
		8/19/2009	39.40	114.46
MW-2	151.38	12/5/2000	26.47	124.91
		3/15/2001	25.40	125.98
	Ī	6/19/2001	24.20	127.18
		9/24/2001	27.94	123.44
		11/20/2001	29.35	122.03
		3/12/2002	26.58	124.80
		5/23/2002	28.11	123.27
	Ī	9/4/2002	31.40	119.98
	Ī	12/12/2002	32.51	118.87
1	Ţ	2/26/2003	30.82	120.56
1	ħ	6/5/2003	28.71	122.67
1	Ţ	8/27/2003	32.32	119.06
1	ļ	12/9/2003	35.67	115.71
1	Ţ	2/24/2004	36.56	114.82
1	153.72	6/29/2004	37.20	116.52
1	ļ	8/12/2004	37.92	115.80
1	ħ	11/15/2004	Dry	Dry
1	Ţ	3/7/2005	38.27	115.45
1	Ţ	5/23/2005	31.25	122.47
1	ħ	8/11/2005	29.18	124.54
1	Ţ	12/2/2005	30.42	123.30
1	Ţ	2/9/2006	30.27	123.45
1	ļ.	5/11/2006	28.14	125.58
1	ļ.	8/30/2006	29.01	124.71
1	ŀ	11/9/2006	30.35	123.37
1	ļ.	2/21/2007	30.16	123.56
1	ŀ	5/22/2007	28.46	125.26
1	ŀ	8/28/2007	31.61	123.20
1	ŀ	11/12/2007	34.44	119.28
1	ŀ	2/18/2008	35.50	118.22
1	ŀ	5/12/2008	34.15	119.57
1	ŀ	8/27/2008	36.87	116.85
1	}	11/10/2008	39.47	114.25
1	}	2/26/2009	39.47 Dry	114.25 Dry
1	-	5/11/2009	•	
	-	8/19/2009	Dry 39.46	Dry 114.26

Historical Groundwater Elevations
December 2000 through August 2009
Former Mission Linen Supply Facility
11904-11920 E. Washington Boulevard, Santa Fe Springs, California

	Casing Elevation 1		Groundwater Depth	Groundwater Elevation		
Well	(Feet)	Date	(Feet) ²	(Feet msl) ³		
MW-3	150.11	12/5/2000	25.20	124.91		
		3/15/2001	24.09	126.02		
		6/19/2001	22.87	127.18		
		9/24/2001	26.61	123.50		
		11/20/2001	27.96	122.15		
		3/12/2002	25.25	124.86		
		5/23/2002	26.70	123.41		
		9/4/2002	30.00	120.11		
		12/12/2002	31.27	118.84		
		2/26/2003	29.51	120.60		
		6/5/2003	27.43	122.68		
		8/27/2003	31.02	119.09		
		12/9/2003 2/24/2004	34.50 35.31	115.61 114.80		
	152.42					
	152.42	6/29/2004 8/12/2004	36.91 36.51	115.51 115.91		
		11/15/2004	38.38	114.04		
		3/7/2005	37.15	115.27		
		5/23/2005	30.31	122.11		
		8/11/2005	27.80	124.62		
		12/2/2005	29.28	123.14		
		2/9/2006	29.08	123.34		
		5/18/2006	26.97	125.45		
		8/30/2006	27.71	124.71		
		11/9/2006	29.56	122.86		
		2/21/2007	28.95	123.47		
		5/22/2007	27.25	125.17		
		8/28/2007	29.85	122.57		
		11/12/2007	33.16	119.26		
		2/18/2008	34.25	118.17		
		5/12/2008	32.85	119.57		
		8/27/2008	35.36	117.06		
		11/10/2008	38.18	114.24		
		2/26/2009	Dry	Dry		
		5/11/2009	Dry	Dry		
		8/19/2009	39.26	113.16		
MW-4	155.45	6/29/2004	38.79	116.66		
	100.10	8/12/2004	39.42	116.03		
		11/15/2004	41.77	113.68		
		3/7/2005	33.60	121.85		
		5/23/2005	32.75	122.70		
		8/11/2005	30.56	124.89		
		12/2/2005	31.91	123.54		
		2/9/2006	31.69	123.76		
		5/11/2006	29.50	125.95		
		8/30/2006	30.33	125.12		
		11/9/2006	32.22	123.23		
		2/21/2007	31.70	123.75		
		5/22/2007	29.88	125.57		
		8/28/2007	33.10	122.35		
		11/12/2007	36.14	119.31		
		2/18/2008	37.10	118.35		
		5/12/2008	35.74	119.71		
		8/27/2008	38.52	116.93		
		11/10/2008	40.95	114.50		
		2/26/2009	43.49	111.96		
		5/11/2009	Dry	Dry		
		8/19/2009	Dry	Dry		

Historical Groundwater Elevations
December 2000 through August 2009
Former Mission Linen Supply Facility
11904-11920 E. Washington Boulevard, Santa Fe Springs, California

Well	Casing Elevation ¹ (Feet)	Date	Groundwater Depth (Feet) ²	Groundwater Elevation (Feet msl) ³
MW-5	154.90	6/29/2004	38.56	116.34
		8/12/2004	39.30	115.60
		11/15/2004	41.54	113.36
		3/7/2005	39.54	115.36
		5/23/2005	32.59	122.31
		8/11/2005	30.38	124.52
		12/2/2005	31.85	123.05
		2/9/2006	31.57	123.33
		5/11/2006	29.38	125.52
		8/30/2006	30.30	124.60
		11/9/2006	32.11	122.79
		2/21/2007	31.55	123.35
		5/22/2007	29.76	125.14
		8/28/2007	33.11	121.79
		11/12/2007	36.41	118.49
		2/18/2008	37.37	117.53
		5/12/2008	35.57	119.33
		8/27/2008	35.57	119.33
		11/10/2008	40.91	113.99
		2/26/2009	43.81	111.09
		5/11/2009	Dry	Dry
		8/19/2009	Dry	Dry
MW-7	152.54	6/29/2004	36.11	116.43
		8/12/2004	36.70	115.84
		11/15/2004	38.86	113.68
		3/7/2005	37.40	115.14
		5/23/2005	30.62	121.92
		8/11/2005	28.36	124.18
		12/2/2005	29.57	122.97
		2/9/2006	29.38	123.16
	Ī	5/11/2006	27.31	125.23
	[8/30/2006	28.17	124.37
	Ī	11/9/2006	29.82	122.72
		2/21/2007	29.32	123.22
	Ī	5/22/2007	27.62	124.92
		8/28/2007	30.90	121.64
		11/12/2007	33.54	119.00
	Ī	2/18/2008	34.58	117.96
		5/12/2008	33.29	119.25
		8/27/2008	35.87	116.67
		11/10/2008	38.30	114.24
		2/26/2009	41.25	111.29
		5/11/2009	42.10	110.44
	ı	8/19/2009	Dry	Dry

Historical Groundwater Elevations

December 2000 through August 2009
Former Mission Linen Supply Facility
11904-11920 E. Washington Boulevard, Santa Fe Springs, California

Well	Casing Elevation ¹ (Feet)	Date	Groundwater Depth (Feet) ²	Groundwater Elevation (Feet msl) ³		
MW-8	151.20	6/29/2004	35.20	116.00		
		8/12/2004	35.78	115.42		
		11/15/2004	37.96	113.24		
		3/7/2005	36.33	114.87		
		5/23/2005	29.61	121.59		
		8/11/2005	27.50	123.70		
		12/2/2005	28.70	122.50		
		2/9/2006	28.55	122.65		
		5/11/2006	26.45	124.75		
		8/30/2006	27.12	124.08		
		11/9/2006	29.00	122.20		
		2/21/2007	28.50	122.70		
		5/22/2007	26.77	124.43		
		8/28/2007	29.92	121.28		
		11/12/2007	32.65	118.55		
		2/18/2008	33.64	117.56		
		5/12/2008	32.34	118.86		
		8/27/2008	34.92	116.28		
		11/10/2008	37.43	113.77		
		2/26/2009	40.31	110.89		
		5/11/2009	41.12	110.08		
		8/19/2009	42.11	109.09		

Notes

- 1) Existing wells (except piezometers) re-surveyed at same time as new wells on June 29, 2004
- 2) Groundwater depth reported in feet below top of well casing
- 3) Groundwater elevation reported in feet from mean sea level (msl)

dry = Well did not contain water
Table based on Rincon July 2004 quarterly report for data prior to 8/12/04

Appendix D Historical Groundwater Analytical Results

Table D-1

Historical Groundwater Analytical Results

June 1999 through August 2009

Former Mission Linen Supply Facility

Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cis-1,2- DCE)	1,1- Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethane (1,1-DCA)
MCL	_	5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-1	6/12/1999	110	0.5	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5
	7/9/1999	230	1.2	<0.5	2.9	< 0.5	< 0.5	<0.5	<0.5	<0.5
	12/5/2000	15.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	3/15/2001	19.5	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	6/19/2001	32.8	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	9/24/2001	52.7	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	11/20/2001	143	1.4	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	3/12/2002	77.6	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	5/23/2002	76.1	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	9/4/2002	67	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	12/12/2002	61.5	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	2/26/2003	125	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	6/5/2003	91.5	1.1	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	8/27/2003	84.5	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	12/9/2003	38.4	1.1	<1.0	1.2	<1.0	<1.0	<3.0	<1.0	<1.0
	2/24/2004	90.1	1.5	<1.0	1.1	<1.0	<1.0	<3.0	<1.0	<1.0
	6/29/2004	106	1.2	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	8/12/2004	210	2.1	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	11/15/2004	dry	dry	dry	dry	dry	dry	dry	dry	dry
	3/7/2005	120	<2.0	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	5/23/2005	370	3.6	<2.0	2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	8/11/2005	120	2.5	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	12/2/2005	190	3.2	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	2/9/2006	66	2.5	< 0.5	<0.5	<0.5	<1.0	<1.0	<0.5	< 0.5
	5/11/2006	58	2.3	<0.5	<0.5	< 0.5	<1.0	<1.0	< 0.5	< 0.5
	8/30/2006	40	1.4	<0.5	<0.5	< 0.5	<1.0	<1.0	< 0.5	< 0.5
	11/9/2006	60	2.2	<0.5	<0.5	< 0.5	<1.0	<1.0	< 0.5	< 0.5
	2/21/2007	21	1.7	< 0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	5/22/2007	7.7	1.1	<0.5	< 0.5	< 0.5	<1.0	<1.0	<0.5	< 0.5
	8/28/2007	46	1.4	<0.5	< 0.5	< 0.5	<1.0	<1.0	<0.5	< 0.5
	11/12/2007	24	1.5	<0.5	<0.5	< 0.5	<1.0	<1.0	< 0.5	< 0.5
	2/18/2008	24	1.8	<0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	5/12/2008	7.6	1.3	<0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	8/27/2008	7.5	1.4	<0.5	<0.5	< 0.5	<1.0	<1.0	< 0.5	<0.5
	11/10/2008	dry	dry	dry	dry	dry	dry	dry	dry	dry
	2/26/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results

June 1999 through August 2009

Former Mission Linen Supply Facility

Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cis-1,2- DCE)	1,1- Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethane (1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-2	6/12/1999	19,000	56	<10	30	<10	<10	<10	<10	<10
	7/9/1999	16,000	61	<10	31	<10	<10	<10	<10	<10
	12/5/2000	18,000	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	3/15/2001	16,600	116	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	6/19/2001	7,310	<100	<100	<100	<100	<100	<300	<100	<100
	9/24/2001	18,900	100	<100	<100	<100	<100	<300	<100	<100
	11/20/2001	15,100	<200	<200	<200	<200	<200	<600	<200	<200
	3/12/2002	7,750	<100	<100	<100	<100	<100	<300	<100	<100
	5/23/2002	21,800	<200	<200	<200	<200	<200	<600	<200	<200
	9/4/2002	24,600	100	<100	100	<100	<100	<300	<100	<100
	12/12/2002	5,440	<50	<50	<50	<50	<50	<150	<50	<50
	2/26/2003	8,250	<100	<100	<100	<100	<100	<300	<100	<100
	6/5/2003	13,300	<200	<200	<200	<200	<200	<600	<200	<200
	8/27/2003	12,300	55	<50	<50	<50	<50	<150	<50	<50
	12/9/2003	1,440	<50	<50	50	<50	<50	<150	<50	<50
	2/24/2004	452	11	<10	<10	<10	<10	<30	<10	<10
	6/29/2004	757	<10	<10	25	<10	<10	<30	<10	<10
	8/12/2004	1,300	<10	<10	23	<10	<20	<20	<10	<10
	11/15/2004	dry	dry	dry	dry	dry	dry	dry	dry	dry
	3/7/2005	2,800	<20	<20	<20	<20	<40	<40	<20	<20
	5/23/2005	5,700	<50	<50	<50	<50	<100	<100	<50	<50
	8/11/2005	3,400	<20	<20	<20	<20	<40	<40	<20	<20
	12/2/2005	3,600	<50	<50	<50	<50	<100	<100	<50	<50
	2/9/2006	2,100	<20	<20	<20	<20	<40	<40	<20	<20
	5/12/2006	1,800	<20	<20	<20	<20	<40	<40	<20	<20
	8/30/2006	1,200	<20	<20	<20	<20	<40	<40	<20	<20
	11/9/2006	1,900	<20	<20	<20	<20	<40	<40	<20	<20
	2/21/2007	1,600	<20	<20	<20	<20	<40	<40	<20	<20
	5/22/2007	640	14	<5.0	<5.0	<5.0	<10	<10	<5.0	<5.0
	8/28/2007	640	19	6	<5.0	<5.0	<10	<10	<5.0	<5.0
	11/12/2007	610	9.1	<5.0	9	<5.0	<10	<10	<5.0	<5.0
	2/18/2008	64	4.8	0.51	1.6	< 0.5	<1.0	<1.0	<0.5	< 0.5
	5/12/2008	140	10	1.3	2.9	<1.0	<2.0	<2.0	<1.0	<1.0
	8/27/2008	190	5.7	2	2.7	<1.0	<2.0	<2.0	<1.0	<1.0
	11/10/2008	dry	dry	dry	dry	dry	dry	dry	dry	dry
	2/26/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results June 1999 through August 2009

Former Mission Linen Supply Facility

Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cis-1,2- DCE)	1,1- Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethan (1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-3	6/12/1999	11,000	18	<10	<10	<10	<10	<10	<10	<10
	7/9/1999	9,900	15	<5.0	7	<5.0	<5.0	<5.0	<5.0	<5.0
	12/5/2000	1,430	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	3/15/2001	2,390	<1	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	6/19/2001	14,800	<100	<100	<100	<100	<100	<300	<100	<100
	9/24/2001	1,840	<10	<10	<10	<10	<10	<30	<10	<10
	11/20/2001	14,500	<200	<200	<200	<200	<200	<600	<200	<200
	3/12/2002	14,700	<100	<100	<100	<100	<100	<300	<100	<100
	5/23/2002	18,800	<200	<200	<200	<200	<200	<600	<200	<200
	9/4/2002	13,700	<100	<100	<100	<100	<100	<300	<100	<100
	12/12/2002	6,560	<100	<100	<100	<100	<100	<300	<100	<100
	2/26/2003	12,400	<100	<100	<100	<100	<100	<300	<100	<100
	6/5/2003	13,600	<200	<200	<200	<200	<200	<600	<200	<200
	8/27/2003	10,700	<50	<50	<50	<50	<50	<150	<50	<50
	12/9/2003	1,170	36	<50	35	<50	<50	<150	<50	<50
	2/24/2004	413	24	28	16	<5.0	<5.0	<15	<5.0	<5.0
	6/29/2004	420	18	53	13	<5.0	<5.0	<15	<5.0	<5.0
	8/12/2004	260	8.6	36	11	< 5.0	<10	<10	<5.0	< 5.0
	11/15/2004	380	7.4	4.9	4.9	<2.0	<4.0	<4.0	<2.0	<2.0
	3/7/2005	870	<10	<10	<10	<10	<20	<20	<10	<10
	5/23/2005	1,600	15	<10	<10	<10	<20	<20	<10	<10
	8/11/2005	1,100	<10	<10	<10	<10	<20	<20	<10	<10
	12/2/2005	2,300	<20	<20	<20	<20	<40	<40	<20	<20
	2/9/2006	1,600	<10	<10	<10	<10	<20	<20	<10	<10
	5/18/2006	960	<10	<10	<10	<10	<20	<20	<10	<10
	8/30/2006	1,200	<10	<10	<10	<10	<20	<20	<10	<10
	11/9/2006	2,200	<20	<20	<20	<20	<40	<40	<20	<20
	2/21/2007	900	<20	<20	<20	<20	<40	<40	<20	<20
	5/22/2007	760	6.9	5.6	<5.0	<5.0	<10	<10	<5.0	<5.0
	8/28/2007	750	8.7	24	<5.0	<5.0	<10	<10	<5.0	<5.0
	11/12/2007	190	2.5	<1.0	1.4	<1.0	<2.0	<2.0	<1.0	<1.0
	2/18/2008	88	4.4	<1.0	1.6	<1.0	<2.0	<2.0	<1.0	<1.0
	5/12/2008	99	3.7	<1.0	1.4	<1.0	<2.0	<2.0	<1.0	<1.0
	8/27/2008	26	2.6	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	11/10/2008	84	5.1	0.72	0.94	<0.5	<1.0	<1.0	<0.5	<0.5
	2/26/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results

June 1999 through August 2009

Former Mission Linen Supply Facility

Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cis-1,2- DCE)	1,1- Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethan (1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-4	6/29/2004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0
	8/12/2004	0.67	0.53	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	11/15/2004	<0.5	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	3/7/2005	2.0	<0.5	<0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	5/23/2005	3.3	0.6	<0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	8/11/2005	2.5	0.56	< 0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	12/2/2005	0.97	1.6	<0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	2/9/2006	0.87	1.5	< 0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	5/11/2006	1.1	1.2	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	8/30/2006	1.1	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	11/9/2006	1.4	0.7	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	2/21/2007	0.55	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	5/22/2007	0.64	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	8/28/2007	1.0	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	11/12/2007	0.67	<0.5	< 0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	2/18/2008	<0.5	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	5/12/2008	<0.5	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	8/27/2008	0.73	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	11/10/2008	0.7	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<0.5	<0.5
	2/26/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results June 1999 through August 2009

Former Mission Linen Supply Facility

				cis-1,2-	1,1-					
Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Dichloroethene (cis-1,2- DCE)	Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethane (1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-5	6/29/2004	511	<10	<10	<10	<10	<10	<30	<10	<10
IVIVV-3	8/12/2004	260	2.9	<2.5	<2.5	<2.5	<5.0	<5.0	<2.5	<2.5
	11/15/2004	280	5.2	<2.5	4	<2.5	<5.0	<5.0	<2.5	<2.5
	3/7/2005	990	12	2.5	3.5	<2.0	5.8	<4.0	2.7	<2.0
MW-DUP (MW-5)	3/7/2005	980	11	<10	<10	<10	<20	<20	<10	<10
WWW-DOT (WWW-5)	5/23/2005	180	4.4	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	8/11/2005	97	2.8	<1.0	<1.0	<1.0	<2.0	<2.0	<1.0	<1.0
MW-DUP (MW-5)	8/11/2005	97 77	2.6	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
IVIVV-DOI (IVIVV-3)	12/2/2005	270	4.8	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	2/9/2006	130	3.6	<1.0	<1.0	<1.0	<2.0	<2.0	<1.0	<1.0
	5/12/2006	190	3.6	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
MW-DUP (MW-5)	5/12/2006	180	3.8	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<4.0 <4.0	<4.0 <4.0	<2.0 <2.0	<2.0 <2.0
MINN-DOF (MINN-3)	8/30/2006	180	2.8	<2.5	<2.5	<2.5	<5.0	<5.0	<2.0 <2.5	<2.5
	11/9/2006	110	2.6 2.5	<2.0	<2.0	<2.5 <2.0	< 4.0	<4.0	<2.5 <2.0	<2.5 <2.0
MW-DUP (MW-5)	11/9/2006	110		<1.0		<1.0		<2.0	<1.0	
MINN-DOP (MINN-9)	2/21/2007		2.6		<1.0		<2.0			<1.0
		260	3.2	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	5/22/2007	66	1.8	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MANA/ DLID (MANA/ C)	8/28/2007	200	<2.5	<2.5	<2.5	<2.5	<5.0	<5.0	<2.5	<2.5
MW-DUP (MW-5)	8/28/2007	250	<2.5	<2.5	<2.5	<2.5	<5.0	<5.0	<2.5	<2.5
	11/12/2007	14	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
	2/18/2008	21	1.6	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
1 0 1 1 D (1 0 1 1 5)	5/12/2008	630	3.8	<10	<10	<10	1.6	<20	<10	<10
MW-DUP (MW-5)	5/12/2008	700	4.2	<2.5	<2.5	<2.5	<5.0	<5.0	<2.5	<2.5
	8/27/2008	440	3.3	<2.5	<2.5	<2.5	<5.0	<5.0	<2.5	<2.5
	11/10/2008	610	6.8	13	<5.0	<5.0	<10	<10	<5.0	<5.0
MW-DUP (MW-5)	11/10/2008	560	5	75	<5.0	<5.0	<10	<10	<5.0	<5.0
	2/26/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results

June 1999 through August 2009

Former Mission Linen Supply Facility

-	Sample	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	1,1- Dichloroethene	Carbon		Chloromethane	1.2-Dichloroethane	1.1- Dichloroethane
Sample I.D.	Date	(PCE)	(TCE)	(cis-1,2- DCE)	(1,1- DCE)	Tetrachloride	Chloroform	(Methyl Chloride)	(1,2-DCA)	(1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-7	6/29/2004	153	1.6	<1.0	2.4	<1.0	<1.0	<3.0	<1.0	<1.0
	8/12/2004	92	1.6	<1.0	<1.0	<1.0	<2.0	<2.0	<1.0	<1.0
MW-DUP (MW-7)	8/12/2004	98	1.5	<1.0	<1.0	<1.0	<2.0	<2.0	<1.0	<1.0
	11/15/2004	420	6.1	<5.0	<5.0	<5.0	<10	<10	<5.0	< 5.0
	3/7/2005	46	<5.0	<5.0	<5.0	<5.0	<10	<10	<5.0	< 5.0
	5/23/2005	190	5.6	<2.0	<2.0	<2.0	<4.0	<4.0	<2.0	<2.0
	8/11/2005	320	5.1	<2.5	2.5	<2.5	<5.0	< 5.0	<2.5	<2.5
	12/2/2005	820	<10	<10	<10	<10	<20	<20	<10	<10
MW-DUP (MW-7)	12/2/2005	790	<10	<10	<10	<10	<20	<20	<10	<10
	2/9/2006	520	5.2	<5.0	< 5.0	<5.0	<10	<10	<5.0	<5.0
	5/12/2006	1,000	<10	<10	11	<10	<20	<20	<10	<10
	8/30/2006	490	4.3	<2.5	4.4	<2.5	<5.0	<5.0	<2.5	<2.5
MW-DUP (MW-7)	8/30/2006	410	<5.0	<5.0	<5.0	<5.0	<10	<10	<5.0	< 5.0
	11/9/2006	520	<10	<10	<10	<10	<20	<20	<10	<10
	2/21/2007	530	<10	<10	<10	<10	<20	<20	<10	<10
	5/22/2007	410	7.6	5.7	6.3	<2.5	<5.0	<5.0	<2.5	<2.5
MW-DUP (MW-7)	5/22/2007	400	7.7	5.7	6.5	<5.0	<10	<10	<5.0	<5.0
	8/28/2007	420	8	4.7	4.9	<2.5	<5.0	<5.0	<2.5	<2.5
	11/12/2007	380	6.3	3.3	5.7	<2.5	<5.0	< 5.0	<2.5	<2.5
	2/18/2008	360	6.3	<2.5	6.7	<2.5	<5.0	< 5.0	<2.5	<2.5
MW-DUP (MW-7)	2/18/2008	340	6.3	<2.5	6.6	<2.5	<5.0	<5.0	<2.5	<2.5
	5/12/2008	210	4.4	<2.5	5.4	<2.5	<5.0	< 5.0	<2.5	<2.5
	8/27/2008	420	6	<2.5	5	<2.5	<5.0	< 5.0	<2.5	<2.5
	11/10/2008	180	3.6	<2.5	4.2	<2.5	<5.0	<5.0	<2.5	<2.5
	2/26/2009	460	5.6	<5.0	<5.0	<5.0	<10	<10	<5.0	<5.0
	5/11/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry
	8/19/2009	dry	dry	dry	dry	dry	dry	dry	dry	dry

Table D-1

Historical Groundwater Analytical Results

June 1999 through August 2009

Former Mission Linen Supply Facility

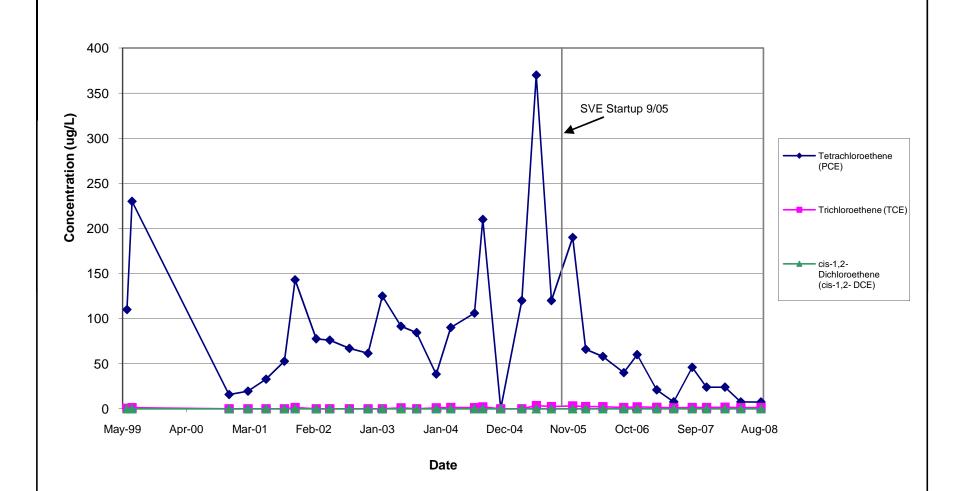
11904-11920 East Washington Boulevard, Santa Fe Springs, California

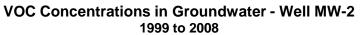
				cis-1,2-	1,1-					
Sample I.D.	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Dichloroethene (cis-1,2- DCE)	Dichloroethene (1,1- DCE)	Carbon Tetrachloride	Chloroform	Chloromethane (Methyl Chloride)	1,2-Dichloroethane (1,2-DCA)	1,1- Dichloroethane (1,1-DCA)
MCL		5.0	5.0	6.0	6.0	0.5	100.0	5.0	0.5	5.0
MW-8	6/29/2004	127	26.1	<1.0	11.7	<1.0	<1.0	<3.0	<1.0	<1.0
	8/12/2004	91	37	<1.0	8.6	<1.0	2.3	<2.0	<1.0	<1.0
	11/15/2004	67	7.6	< 0.5	4	< 0.5	3.7	<0.5	<0.5	<0.5
MW-DUP (MW-8)	11/15/2004	66	7.8	< 0.5	5.1	< 0.5	3.6	<0.5	<0.5	<0.5
	3/7/2005	300	11	<1.0	8.1	<1.0	2.1	<2.0	<1.0	<1.0
	5/23/2005	53	7.1	< 0.5	5.2	< 0.5	2.5	<1.0	<0.5	<0.5
MW-DUP (MW-8)	5/23/2005	55	7.3	< 0.5	5.5	< 0.5	2.5	<1.0	<0.5	<0.5
	8/11/2005	42	6.4	< 0.5	5.6	< 0.5	1.7	<1.0	<0.5	<0.5
	12/2/2005	75	10	<0.5	6.9	< 0.5	1.2	<1.0	<0.5	<0.5
	2/9/2006	150	12	<2.0	10	<2.0	<4.0	<4.0	<2.0	<2.0
MW-DUP (MW-8)	2/9/2006	170	13	<2.0	11	<2.0	<4.0	<4.0	<2.0	<2.0
	5/11/2006	220	11	<2.0	12	<2.0	<4.0	<4.0	<2.0	<2.0
	8/30/2006	130	8	<2.0	5.7	<2.0	<4.0	<4.0	<2.0	<2.0
	11/9/2006	79	11	<0.5	3.4	<0.5	<1.0	<1.0	<0.5	<0.5
	2/21/2007	150	15	<1.0	6.4	<1.0	<1.0	<2.0	<1.0	<1.0
MW-DUP (MW-8)	2/21/2007	140	14	<1.0	6.4	<1.0	<2.0	<2.0	<1.0	<1.0
	5/22/2007	140	10	<0.5	3.8	<0.5	<1.0	<1.0	<0.5	<0.5
	8/28/2007	96	8.2	<0.5	1.4	<0.5	<1.0	<1.0	<0.5	<0.5
	11/12/2007	260	20	<2.5	4.2	<2.5	< 5.0	<5.0	<2.5	<2.5
MW-DUP (MW-8)	11/12/2007	300	22	<2.5	5.7	<2.5	< 5.0	<5.0	<2.5	<2.5
	2/18/2008	190	19	<2.5	4.0	<2.5	< 5.0	<5.0	<2.5	<2.5
	5/12/2008	51	9.1	<0.5	1.9	<0.5	<1.0	<1.0	<0.5	<0.5
	8/27/2008	290	79	0.56	4.2	<0.5	1	<1.0	<0.5	<0.5
MW-DUP (MW-8)	8/27/2008	350	77	<2.5	3.7	<2.5	< 5.0	<5.0	<2.5	<2.5
	11/10/2008	160	21	<2.5	3.3	<2.5	< 5.0	<5.0	<2.5	<2.5
	2/26/2009	180	11	<2.0	3.2	<2.0	<4.0	<4.0	<2.0	<2.0
MW-DUP (MW-8)	2/26/2009	190	11	<2.0	4.1	<2.0	<4.0	<4.0	<2.0	<2.0
. ,	5/11/2009	110	17	<1.0	4.0	<1.0	1.7	<2.0	<1.0	<1.0
MW-DUP (MW-8)	5/11/2009	89	14	<1.0	2.9	<1.0	1.8	<2.0	<1.0	<1.0
` ,	8/19/2009	270	15	<2.0	5.7	<2.0	<4.0	<4.0	<2.0	<2.0
MW-DUP (MW-8)	8/19/2009	270	14	<2.0	5.5	<2.0	<4.0	<4.0	<2.0	<2.0

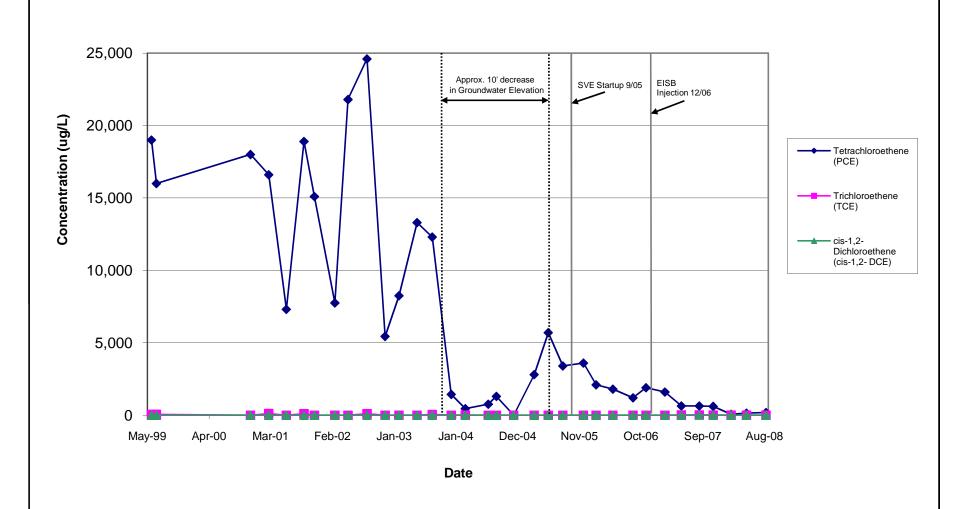
Notes:

All concentrations reported in micrograms per Liter (ug/L)

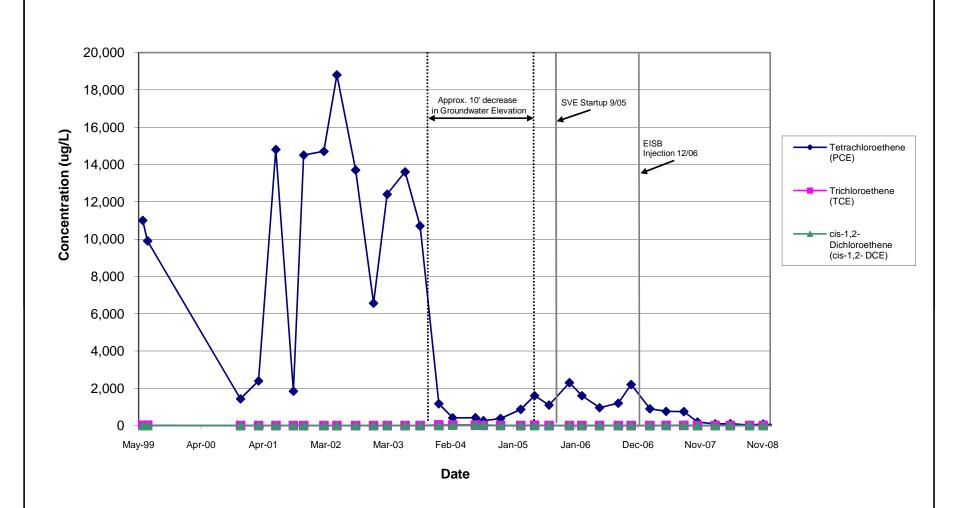
Only detected analytes are presented, see laboratory reports for complete list of analytes

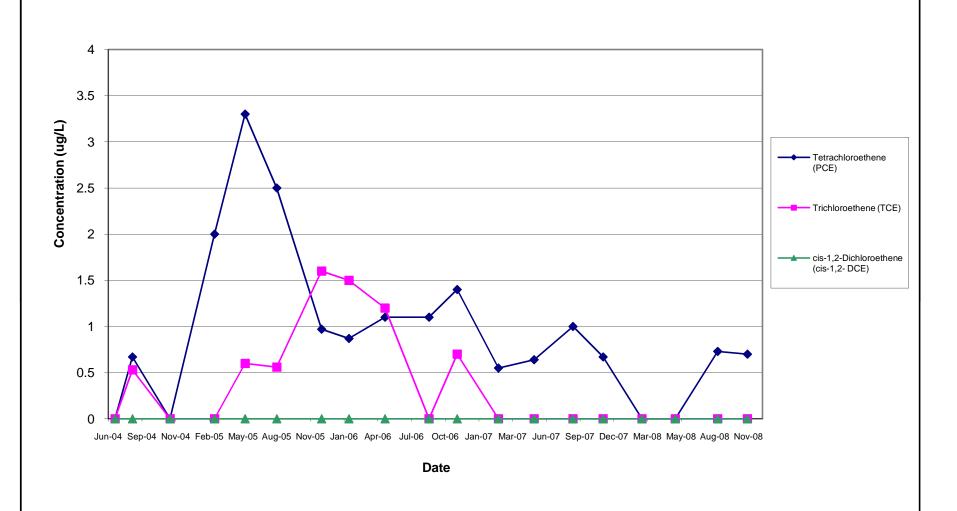

MCL = EPA Region 9 Maximum Contaminant Level for Drinking water

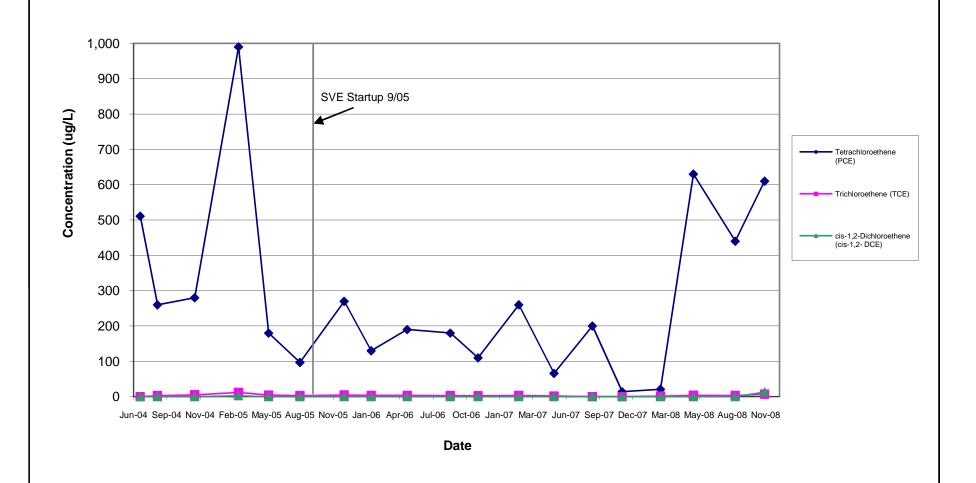

Table based on Rincon July 2004 quarterly report for data prior to 8/12/04

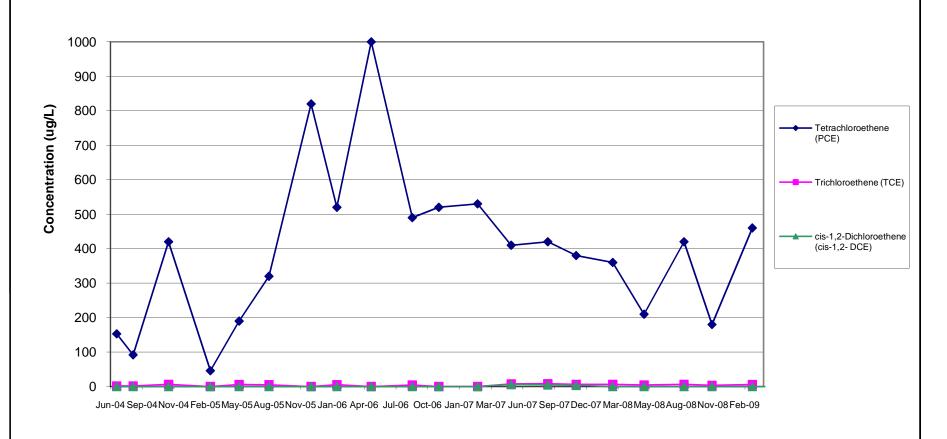

< = not detected at detection limit shown

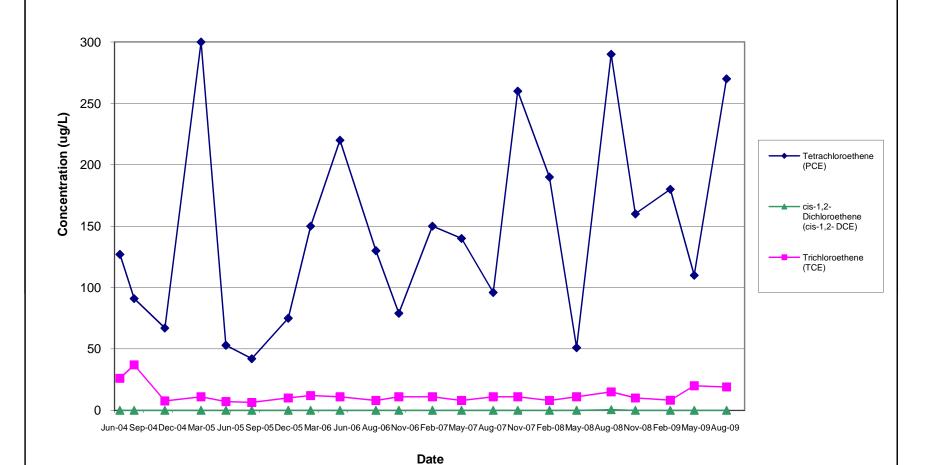
Appendix E Time Series Chemical Data








VOC Concentrations in Groundwater - Well MW-4 2004 to 2008



Date

